18 October 2018

ABOUT ADRIATIC METALS

Adriatic Metals PLC is focused on the development of the 100% owned, high-grade zinc polymetallic Vareš Project in Bosnia & Herzegovina.

DIRECTORS AND MANAGEMENT

Mr Peter Bilbe NON-EXECUTIVE CHAIRMAN

Mr Geraint Harris CHIEF EXECUTIVE OFFICER

Mr Paul Cronin NON-EXECUTIVE DIRECTOR

Mr Julian Barnes NON-EXECUTIVE DIRECTOR

Mr Eric de Mori NON-EXECUTIVE DIRECTOR

Mr Milos Bosnjakovic NON-EXECUTIVE DIRECTOR

Mr Sean Duffy CFO AND COMPANY SECRETARY

adriaticmetals.com

FURTHER NORTHERN EXTENSION TO HIGH GRADE MINERALISATION WITH 66 METRE INTERCEPT AT RUPICE

HIGHLIGHTS

- Drill hole BR-17-18 continues to extend the high-grade zone to the north by 35m, returning:
 - 66m @ 9.5% Zn, 4.9% Pb, 187g/t Ag, 2.4g/t Au, 0.5% Cu, and 56% BaSO₄ from 204m.
- Drill holes BR-15-18 and BR-16-18 confirm continuity of mineralisation up-dip and to the west at Rupice and assaying has included precious metals that were not assayed in historic holes.
 - Drill hole BR-15-18, returned 8m @ 0.5% Zn, 0.8% Pb, 43g/t Ag, 1.4g/t Au, 0.1% Cu, and 53% BaSO₄ from 194m, and
 - Drill hole BR-16-18, returned 2m @ 4.3% Zn, 2.8% Pb, 262g/t Ag, 4.0g/t Au, 0.5% Cu, and 78% BaSO₄ from 196m.
- Drilling continues with 4 rigs in operation.

OVERVIEW

Adriatic Metals PLC (ASX:ADT & FSE:3FN) ('Adriatic' or the 'Company') is pleased to announce that it has received assay results from a further four drill holes from the current programme at Rupice. Figure 1 illustrates a plan view of the drilling locations.

Adriatic's Chief Executive Officer, Geraint Harris commented, "*BR-17-18* continues to confirm the continuity and down dip extension of the thick and high grade mineralisation drilled in our 2017 and 2018 campaigns. Our drilling is providing an excellent understanding of the nature of our high-grade zone as it extends well beyond the historical drilling to the north and to the very limit of our licence. They also demonstrate the opportunity for additional precious metals content, when adequately sampled within the area of historical drilling, which was mostly not assayed for precious metals. This will provide significant upside once incorporated into our maiden Mineral Resource Estimate at Rupice".

OVERVIEW

Mineralisation is interpreted to be dominantly strata-bound and hosted within brecciated sediments dipping approximately 45° to the northeast of Rupice. Consistent with most of the drill-holes of the 2017 and 2018 campaigns the mineralisation is visually distinct from the host rock and consists of galena, sphalerite, chalcopyrite and barite. The mineralised intervals of the drill holes are shown in Table 1.

18 October 2018

Drill hole BR-17-18 intercepted a thick zone of high-grade mineralisation from 204m downhole depth, over a thickness of 66m. This intercept is located some 35m down plunge from BR-5-18 and approximately the same distance down dip of BR-10-18 both of which returned high-grade intervals of 66m from 210m, and 16m and 28m from 190m and 236m, respectively (Table 2). The hole was drilled in a south-westerly direction at -81°.

BR-15-18 and BR-16-18 targeted the up-dip continuation of the mineralisation away from and to the west of the high-grade zone and both holes intercepted two zones of breccia of similar thicknesses; an upper zone from around 178m of 15m thickness, and a lower zone from 195m to 210m, both of which are mineralised with high-grade mineralisation intersected over 8m from 194m and 2m from 196m respectively. The holes were drilled in a south-westerly direction at -81° and -68° also provide gold and silver information which was not assayed for in the nearby historical drill hole BR-79-89.

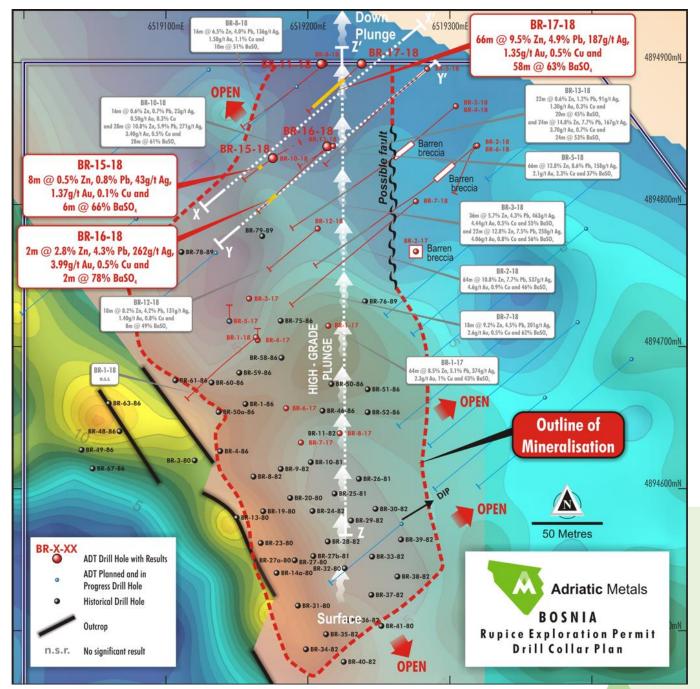
BR-11-18 was drilled vertically on the northern licence boundary, yet it deviated significantly to the north-east thereby missing the northern plunge of the high-grade zone which is interpreted to lie to the west and closer to drill hole BR-8-18 which returned 16m of mineralisation from 206m down hole. Given the ineffectiveness of BR-11-18, consideration is being given to re-drill this hole.

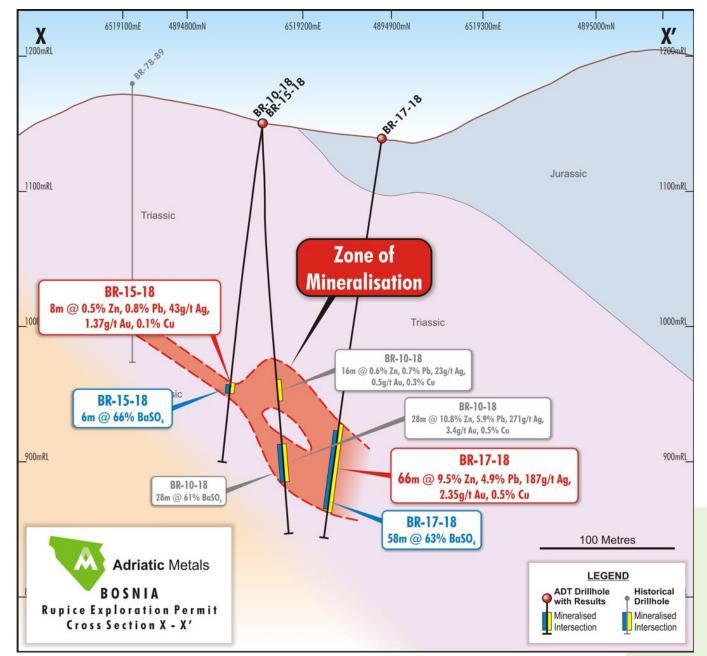
HOLE	FROM M	TO M	INTERVAL M	Zn %	Pb %	Ag g/t	Au g/t	Cu %	BaSO₄ %
BR-17-18	204	270	66	9.5	4.9	187	2.35	0.5	56
Including	210	236	26	11.5	5.6	179	2.86	0.4	66
Including	250	268	18	17.1	8.9	153	1.57	1.0	48
BR-15-18	194	202	8	0.5	0.8	43	1.37	0.1	53
BR-15-18	206	208	2	1.1	1.1	124	0.73	0.1	9
BR-16-18	196	198	2	4.3	2.8	262	3.99	0.5	78
BR-11-18	302	306	4	0.9	0.3	14	0.16	0.0	1

 Table 1 Drill hole results for BR-11-18, BR-15-18, BR-16-18 and BR-17-18; Lead or Zinc greater than 0.5%, including higher-grade intersection with Lead plus Zinc > 10%

As announced previously, the Company is expecting to have all permissions required to continue exploration down plunge and along strike at Rupice North in the extended concession area by early November, and the company has prepared initial drill locations in the new area. A further announcement will be made regarding the final concession extension approvals in the coming weeks.

18 October 2018

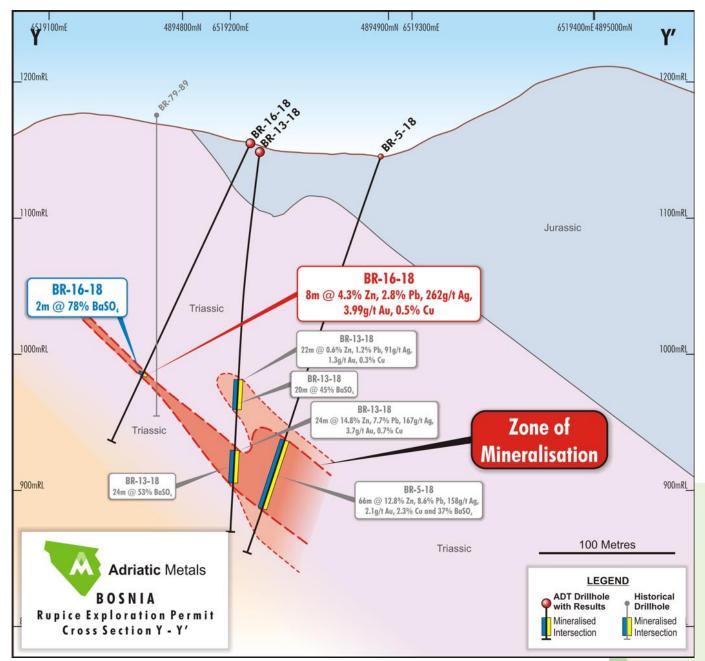



Figure 1: Plan Map showing the location of drill holes BR-11-18, BR-15-18, BR-16-18 and BR-17-18

Page 3 of 15

18 October 2018

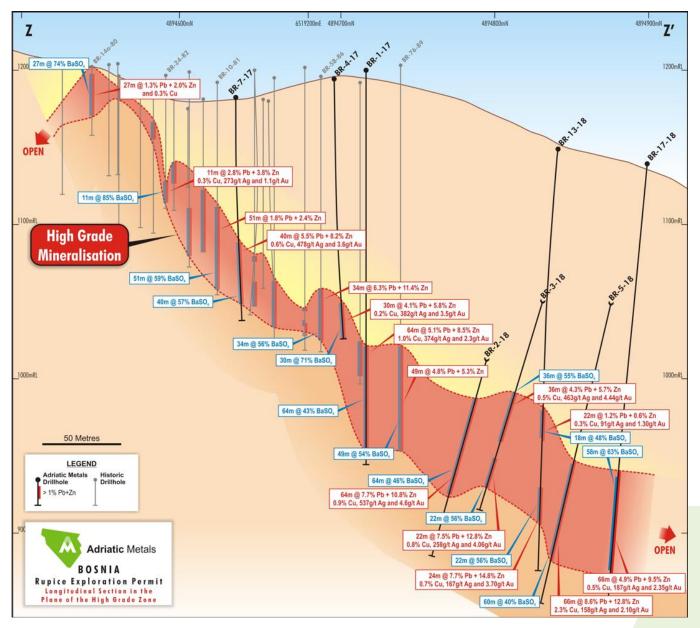
Figure 2: Cross Section illustrating Drill Hole BR-15-18 and BR-17-18



Page 4 of 15

18 October 2018

Figure 3: Cross Section illustrating drill hole BR-16-18



Page 5 of 15

18 October 2018

Figure 4: Long Section in the Plane of the High Grade Zone

Page 6 of 15

18 October 2018

Highlighted drill results from the 2018 and 2017 drilling programmes are in Table 2 below.

			than 0.5%						
HOLE	FROM	то	INTERVAL	Zn	Pb	Ag	Au	Cu	BaSO4
HOLE	М	М	М	%	%	g/t	g/t	%	%
BR-17-18	204	270	66	9.5	4.9	187	2.35	0.5	56
BR-16-18	196	198	2	4.3	2.8	262	3.99	0.5	78
BR-15-18	194	202	8	0.5	0.8	43	1.37	0.1	53
BR-15-18	206	208	2	1.1	1.1	124	0.73	0.1	9
BR-13-18	168	190	22	0.6	1.2	91	1.3	0.3	41
BR-13-18	220	244	24	14.8	7.7	167	3.7	0.7	53
BR-12-18	186	188	2	1.1	0.5	10	0.4	0.4	1
BR-12-18	200	218	18	8.2	4.2	131	1.4	0.8	27
BR-11-18	302	306	4	0.9	0.3	14	0.16	0.0	1
BR-10-18	190	206	16	0.6	0.7	23	0.5	0.3	6
BR-10-18	236	264	28	10.8	5.9	271	3.4	0.5	61
BR-8-18	206	222	16	6.5	4	136	1.6	1.1	33
BR-7-18	228	246	18	9.2	4.5	201	2.6	0.5	62
BR-5-18	210	276	66	12.8	8.6	158	2.1	2.3	37
BR-3-18	196	232	36	5.7	4.3	463	4.4	0.5	55
BR-3-18	244	266	22	12.8	7.5	258	4.1	0.8	56
BR-2-18	214	278	64	10.8	7.7	537	4.6	0.9	46
BR-7-17	94	134	40	8.2	5.5	479	3.6	0.6	57
BR-6-17	116	138	22	1.8	1.7	161	1.8	0.3	26
BR-4-17	146	176	30	5.8	4.1	382	3.5	0.2	71
BR-1-17	178	242	64	8.4	5.1	373	2.3	0.9	44

 Table 2: Drill hole results of BR-11-18, BR-15-18, BR-16-18 BR-17-18 and previous highlighted drill holes at Rupice; Lead or Zinc greater

 than 0.5%

For further information please contact:

Geraint Harris Chief Executive Officer Adriatic Metals Plc info@adriaticmetals.com

18 October 2018

COMPETENT PERSONS REPORT

The information in this report which relates to Exploration Results is based on information compiled by Mr Robert Annett, who is a member of the Australian Institute of Geoscientists (AIG). Mr Annett is a consultant to Adriatic Metals PLC, and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Annett consents to the inclusion in this report of the matters based on that information in the form and context in which it appears.

ABOUT ADRIATIC METALS

Adriatic Metals PLC (ASX:ADT) ("Adriatic" or "Company") is an ASX-listed zinc polymetallic explorer and developer via its 100% interest in the Vareš Project in Bosnia & Herzegovina. The Project comprises a historic open cut zinc/lead/barite and silver mine at Veovaca and Rupice, an advanced proximal deposit which exhibits exceptionally high grades of base and precious metals. Adriatic's short-term aim is to expand the current JORC resource at Veovaca and to complete an in-fill drilling programme at the high-grade Rupice deposit. Adriatic has attracted a world class team to expedite its exploration efforts and to rapidly advance the Company into the development phase and utilise its first mover advantage and strategic assets in Bosnia.

DISCLAIMER

Forward-looking statements are statements that are not historical facts. Words such as "expect(s)", "feel(s)", "believe(s)", "will", "may", "anticipate(s)", "potential(s)" and similar expressions are intended to identify forward-looking statements. These statements include, but are not limited to statements regarding future production, resources or reserves and exploration results. All of such statements are subject to certain risks and uncertainties, many of which are difficult to predict and generally beyond the control of the Company, that could cause actual results to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. These risks and uncertainties include, but are not limited to: (i) those relating to the interpretation of drill results, the geology, grade and continuity of mineral deposits and conclusions of economic evaluations, (ii) risks relating to possible variations in reserves, grade, planned mining dilution and ore loss, or recovery rates and changes in project parameters as plans continue to be refined, (iii) the potential for delays in exploration or development activities or the completion of feasibility studies, (iv) risks related to commodity price and foreign exchange rate fluctuations, (v) risks related to failure to obtain adequate financing on a timely basis and on acceptable terms or delays in obtaining governmental approvals or in the completion of development or construction activities, and (vi) other risks and uncertainties related to the Company's prospects, properties and business strategy. Our audience is cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and we do not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

18 October 2018

Table 3 - Assay Results for BR-10, 12 and 13 located at 6519179mE 4894836mN, 6519207mN 4894785mN, and
6519214mE 4894840mN respectively (MGI Balkans Z6 grid)

Drill Hole	From	То	Interval	Pb %	Zn %	Cu %	BaS04%	Au g/t	Ag g/t
BR-10-18	0	174	174			Not A	ssayed		
BR-10-18	174	176	2	0.05	0.12	0.01	1	0.18	10
BR-10-18	176	178	2	3.72	3.04	0.23	2	0.61	40
BR-10-18	178	180	2	1.89	2.32	0.41	5	0.75	38
BR-10-18	180	182	2	0.01	0.03	0.00	1	0.12	1
BR-10-18	182	184	2	0.01	0.01	0.00	0	0.10	1
BR-10-18	184	186	2	0.18	0.39	0.02	4	0.18	1
BR-10-18	186	188	2	0.05	0.14	0.00	4	0.16	1
BR-10-18	188	190	2	0.01	0.02	0.02	6	0.09	1
BR-10-18	190	192	2	0.96	0.41	0.48	2	0.28	14
BR-10-18	192	194	2	0.70	0.41	0.75	1	0.29	10
BR-10-18	194	196	2	0.34	0.58	0.03	6	0.22	24
BR-10-18	196	198	2	0.07	0.14	0.02	3	0.23	1
BR-10-18	198	200	2	0.17	0.29	0.06	6	0.37	5
BR-10-18	200	202	2	1.35	1.64	0.68	6	0.76	35
BR-10-18	202	204	2	0.30	0.29	0.21	3	0.26	33
BR-10-18	204	206	2	1.64	0.64	0.07	24	1.36	64
BR-10-18	206	208	2	0.06	0.11	0.01	0	0.03	1
BR-10-18	208	210	2	0.06	0.14	0.01	1	0.01	1
BR-10-18	210	212	2	0.18	0.29	0.02	2	0.03	1
BR-10-18	212	214	2	0.37	0.02	0.04	2	0.08	1
BR-10-18	214	216	2	0.07	0.05	0.03	3	0.24	1
BR-10-18	216	232	16			Not A	ssayed		
BR-10-18	232	234	2	0.03	0.02	0.01	11	0.21	3
BR-10-18	234	236	2	0.06	0.05	0.01	3	0.04	4
BR-10-18	236	238	2	0.63	0.26	0.02	64	1.10	26
BR-10-18	238	240	2	0.85	1.20	0.07	75	2.56	199
BR-10-18	240	242	2	2.33	0.99	0.22	75	5.88	637
BR-10-18	242	244	2	3.47	4.10	0.48	75	6.69	906
BR-10-18	244	246	2	5.31	9.58	0.35	74	3.36	165
BR-10-18	246	248	2	6.90	12.65	0.61	66	3.63	151
BR-10-18	248	250	2	7.16	14.85	0.73	61	3.28	112
BR-10-18	250	252	2	5.55	12.00	0.53	67	2.58	91
BR-10-18	252	254	2	13.05	27.20	1.04	35	1.98	152
BR-10-18	254	256	2	11.50	23.00	1.11	42	2.58	162
BR-10-18	256	258	2	7.74	15.50	0.72	58	6.38	207
BR-10-18	258	260	2	7.53	17.10	0.53	61	3.30	261

18 October 2018

Drill Hole	From	То	Interval	Pb %	Zn %	Cu %	BaS04%	Au g/t	Ag g/t
BR-10-18	260	262	2	6.57	11.15	0.48	54	2.86	352
BR-10-18	262	264	2	4.43	2.26	0.45	49	2.01	373
BR-10-18	264	266	2	0.12	0.23	0.02	0	0.20	3
BR-10-18	266	268	2	0.14	0.35	0.03	0	0.18	4
BR-10-18	268	270	2	0.52	1.52	0.04	0	0.16	26
BR-10-18	270	304.2(EOH)	34.2			Not A	ssayed		
BR-12-18	0	184	184			Not A	ssayed		
BR-12-18	184	186	2	0.04	0.09	0.04	4	0.21	18
BR-12-18	186	188	2	0.49	1.07	0.40	1	0.41	10
BR-12-18	188	200	12			Not A	ssayed		
BR-12-18	200	202	2	0.19	0.85	0.02	12	0.02	3
BR-12-18	202	204	2	2.23	3.40	0.14	79	3.07	180
BR-12-18	204	206	2	8.23	18.05	0.87	58	3.50	346
BR-12-18	206	208	2	14.75	27.90	3.82	25	2.55	340
BR-12-18	208	210	2	10.55	21.90	1.89	35	2.12	184
BR-12-18	210	212	2	0.28	0.49	0.05	3	0.20	37
BR-12-18	212	214	2	0.54	0.36	0.02	15	0.28	18
BR-12-18	214	216	2	0.52	0.58	0.02	12	0.43	27
BR-12-18	216	218	2	0.30	0.65	0.07	4	0.43	48
BR-12-18	218	220	2	0.38	0.40	0.11	3	0.64	68
BR-12-18	220	256.2(EOH)	36.2		•	Not A	ssayed	•	
BR-13-18	0	164	164			Not A	ssayed		
BR-13-18	164	166	2	0.01	0.02	0.00	1	0.15	1
BR-13-18	166	168	2	0.01	0.03	0.01	0	0.15	2
BR-13-18	168	170	2	0.44	0.50	1.10	3	0.44	17
BR-13-18	170	172	2	2.00	1.34	1.12	61	1.28	77
BR-13-18	172	174	2	0.57	0.53	0.22	24	0.29	21
BR-13-18	174	176	2	0.21	0.69	0.16	11	0.22	68
BR-13-18	176	178	2	0.10	0.22	0.03	2	0.07	11
BR-13-18	178	180	2	1.28	0.86	0.15	54	1.68	203
BR-13-18	180	182	2	4.48	0.63	0.49	81	5.21	498
BR-13-18	182	184	2	1.40	0.43	0.01	73	1.32	36
BR-13-18	184	186	2	0.15	0.65	0.03	64	1.62	15
BR-13-18	186	188	2	0.19	0.41	0.01	66	1.05	7
BR-13-18	188	190	2	1.88	0.22	0.08	18	0.94	45
BR-13-18	190	192	2	0.01	0.03	0.06	0	0.01	5
BR-13-18	192	194	2	0.01	0.01	0.02	1	0.02	1
BR-13-18	194	216	22		-	Not A	ssayed		
BR-13-18	216	218	2	0.02	0.02	0.00	0	0.01	1

Adriatic Metals plc, Second Floor, Stamford House, Regent Street, Cheltenham GL50 1HN United Kingdom

Page 10 of 15

18 October 2018

Drill Hole	From	То	Interval	Pb %	Zn %	Cu %	BaS04%	Au g/t	Ag g/t
BR-13-18	218	220	2	0.01	0.01	0.01	0	0.01	1
BR-13-18	220	222	2	5.27	7.91	0.36	47	2.69	182
BR-13-18	222	224	2	7.34	13.50	0.58	68	3.34	243
BR-13-18	224	226	2	5.00	10.20	0.39	74	3.59	195
BR-13-18	226	228	2	3.48	8.76	0.33	77	5.96	116
BR-13-18	228	230	2	4.83	11.30	0.50	73	3.90	156
BR-13-18	230	232	2	3.68	8.40	0.40	75	4.69	119
BR-13-18	232	234	2	4.03	7.03	0.57	77	5.07	125
BR-13-18	234	236	2	13.05	22.10	1.81	38	4.28	214
BR-13-18	236	238	2	15.60	27.70	1.47	28	4.63	221
BR-13-18	238	240	2	17.60	34.30	1.33	19	3.01	218
BR-13-18	240	242	2	11.45	23.20	0.82	44	2.24	168
BR-13-18	242	244	2	1.52	3.22	0.11	17	1.10	46
BR-13-18	244	246	2	0.09	0.17	0.01	1	0.04	8
BR-13-18	246	248	2	0.07	0.23	0.01	1	0.02	30
BR-13-18	248	250	2	0.09	0.22	0.01	0	0.07	28
BR-13-18	250	273.9(EOH)	23.9	Not Assayed					

Page 11 of 15

18 October 2018

APPENDIX 1- SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections.)

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	HQ diamond core was cut in half to provide a sample for assay typically weighing around 8-10kg. Samples were submitted to the ALS facility in Bor, Serbia for industry standard analytical analysis.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	The half core and weight of the sample provides sufficient representivity. No calibration of any equipment was required as all samples were sent for assay by commercial laboratory.
Sampling techniques	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	HQ3 diamond core was used to obtain 2m samples from which 8-10kg of material was pulverised to produce sample for fire assay, ICP-MS and X-ray Fluorescence (XRF).
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other	BR-10-18, BR-12-18 and BR-13-18 were drilled using non-core methods to depths of 174m, 184m and 164m respectively after which drill advance was by HQ3 diamond core to end of hole.

18 October 2018

	<i>type, whether core is oriented and if so, by what method, etc).</i>	
	Method of recording and assessing core and chip sample recoveries and results assessed.	All core was logged for geology and RQD with recovery in the mineralised and sampled zone greater than 90%. The HQ diameter and sampling of half core ensured the representative nature of
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	the samples. There is no observed relationship between sample recovery and grade, and with little to no
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	loss of material there is considered to be little to no sample bias.
	□ Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Sufficient geotechnical logging of the core has been taken and in sufficient detail to support a Mineral Resource estimate however, no Mineral Resource estimate is being reported, only assay results.
Logging	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	All core is photographed and logging is qualitative.
	The total length and percentage of the relevant intersections logged.	All core is logged.
	I If core, whether cut or sawn and whether quarter, half or all core taken.	The HQ diameter core was cut in half using a diamond saw.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	The sampled material is HQ3 half core.
<i>Sub-sampling techniques and sample preparation</i>	□ For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Collection of around 8-10kg of half core material with subsequent pulverisation of the total charge provided an appropriate and representative sample for analysis. Sample preparation was undertaken at the ALS laboratory in Bor, to industry best practice.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Industry best practice was adopted by ALS for laboratory sub-sampling and the avoidance of any cross contamination.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance	The half core sampling is considered a reasonable representation of the in-situ material. No duplicate material was collected although a

18 October 2018

	<i>results for field duplicate/second-half sampling.</i>	Certified Reference Material was inserted every 15 samples or less.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample size of around 8-10kg is considered to be appropriate to reasonably represent the material being tested.
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Analyses were undertaken at the accredited laboratory of ALS in Bor, Serbia which has full industry certification. Multi elements were assayed by an ICP-MS technique following an aqua regia digest. Gold was determined using a fire assay on a nominal 30g charge. Barite was determined from a fusion followed by dissolution and ICP-AES analysis. All techniques were appropriate for the elements being determined. Samples are considered a partial digestion when using an aqua regia digest.
		There was no reliance on determination of analysis by geophysical tools.
<i>Quality of assay data and laboratory tests</i>	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Certified Reference Material (CRM) appropriate for the elements being analysed were added at a rate better than 1 in 15. All results reported by ALS on the CRMs were to better than 1-2 standard deviation (1SD), it is considered that acceptable levels of accuracy have been achieved.
	The verification of significant intersections by either independent or alternative company personnel.	There has been no independent logging of the mineralised interval however, it has been logged by several company personnel and verified by senior staff using core photography.
<i>Verification of sampling and assaying</i>	The use of twinned holes.	None of the reported holes are twin holes.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Field collection data was uploaded using the Micromine software and verified at point of entry. Data is stored on the Virtual Cloud and at various

18 October 2018

		locations including Perth, WA. It is regularly backed-up.
	Discuss any adjustment to assay data.	No adjustments were necessary.
	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Sampling sites were surveyed using DGPS to better than 0.5m accuracy in the local BiH coordinate system.
Location of data points	Specification of the grid system used.	The grid system used MGI 1901 / Balkans Zone 6.
	Quality and adequacy of topographic control.	The topographic surface of the immediate area was generated from a combination of DGPS and digitisation of government topographic contours. It is considered sufficiently accurate for the Company's current activities.
	Data spacing for reporting of Exploration Results.	Results from three drill holes are being reported. All samples were collected at 2m intervals down hole.
<i>Data spacing and distribution</i>	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	No Mineral Resource or Ore Reserve is being reported.
	Whether sample compositing has been applied.	Sample composite was not employed.
Orientation of data in	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	BR-10-18, BR-12-18 and BR-13-18 were drilled at a declination of -90°, -82° and -85° respectively and are considered to be reasonably orthogonal to the interpreted dip of the mineralisation.
<i>relation to geological structure</i>	□ If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	It is not considered that the drilling orientation has introduced a sampling bias, as the drilling is considered to be orthogonal to the strata bound mineralisation.
Sample security	The measures taken to ensure sample security.	Chain of Custody of digital data is managed by the Company. Physical material was stored on site and, when necessary, delivered to the assay laboratory. Thereafter laboratory samples were controlled by the nominated laboratory. All sample collection was controlled by digital sample control file(s) and hard-copy ticket books.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been undertaken.

Page 15 of 15