KASIYA EXPANDED SCOPING STUDY PRESENTATION

JUNE 2022 | AIM: SVML | ASX: SVM | ABN: 71 120 833 427

DISCLAIMERS & DISCLOSURES

AUTHORISATION STATEMENT

This presentation has been approved and authorised for release by the Company's Managing Director, Dr Julian Stephens.

DISCLAIMER NOTICE

This presentation has been prepared as a summary only and does not contain all information Sovereign Metals Limited's ("SVM") assets and liabilities, financial position and performance, profits and losses, prospects, and the rights and liabilities attaching to SVM's securities. The securities issued by SVM are considered speculative and there is no guarantee that they will make a return on the capital invested, that dividends will be paid on the shares or that there will be an increase in the value of the shares in the future. SVM does not purport to give financial or investment advice. No account has been taken of the objectives, financial situation or needs of any recipient of this report. Recipients of this report should carefully consider whether the securities issued by SVM are an appropriate investment for them in light of their personal circumstances, including their financial and taxation position. The material in this presentation ("material") is not and does not constitute an offer, invitation or recommendation to subscribe for, or purchase any security in SVM nor does it form the basis of any contract or commitment. SVM makes no representation or warranty, express or implied, as to the accuracy, reliability or completeness of this material.

SVM, its directors, employees, agents and consultants shall have no liability, including liability to any person by reason of negligence or negligent misstatement, for any statements, opinions, information or matters, express or implied, arising out of, contained in or derived from, or for any omissions from this material except liability under statute that cannot be excluded. Statements contained in this material, particularly those regarding possible or assumed future performance, costs, dividends, production levels or rates, prices, resources, reserves or potential growth of SVM, industry growth or other trend projections are, or maybe, forward looking statements relate to future events and expectations and, as such, involve known and unknown risks and uncertainties. Actual results and developments may differ materially from those expressed or implied by these forward looking statements depending on a variety of factors.

FORWARD LOOKING STATEMENT

This presentation may include forward-looking statements, which may be identified by words such as "expects", "anticipates", "believes", "projects", "plans", and similar expressions. These forward-looking statements are based on Sovereign's expectations and beliefs concerning future events. Forward looking statements are necessarily subject to risks, uncertainties and other factors, many of which are outside the control of Sovereign, which could cause actual results to differ materially from such statements. There can be no assurance that forward-looking statements will prove to be correct. Sovereign makes no undertaking to subsequently update or revise the forward-looking statements made in this release, to reflect the circumstances or events after the date of that release.

COMPETENT PERSONS STATEMENT

The information in this presentation that relates to Production Targets, Processing, Infrastructure and Capital and Operating Costs, is extracted from the announcement dated 16 June 2022 which is available to view on <u>www.sovereignmetals.com.au</u>. SVM confirms that: a) it is not aware of any new information or data that materially affects the information included in the announcement; b) all material assumptions and technical parameters underpinning the Production Target, and related forecast financial information derived from the Production Target included in the Announcement continue to apply and have not materially changed; and c) the form and context in which the relevant Competent Persons' findings are presented in this presentation have not been materially modified from the Announcement.

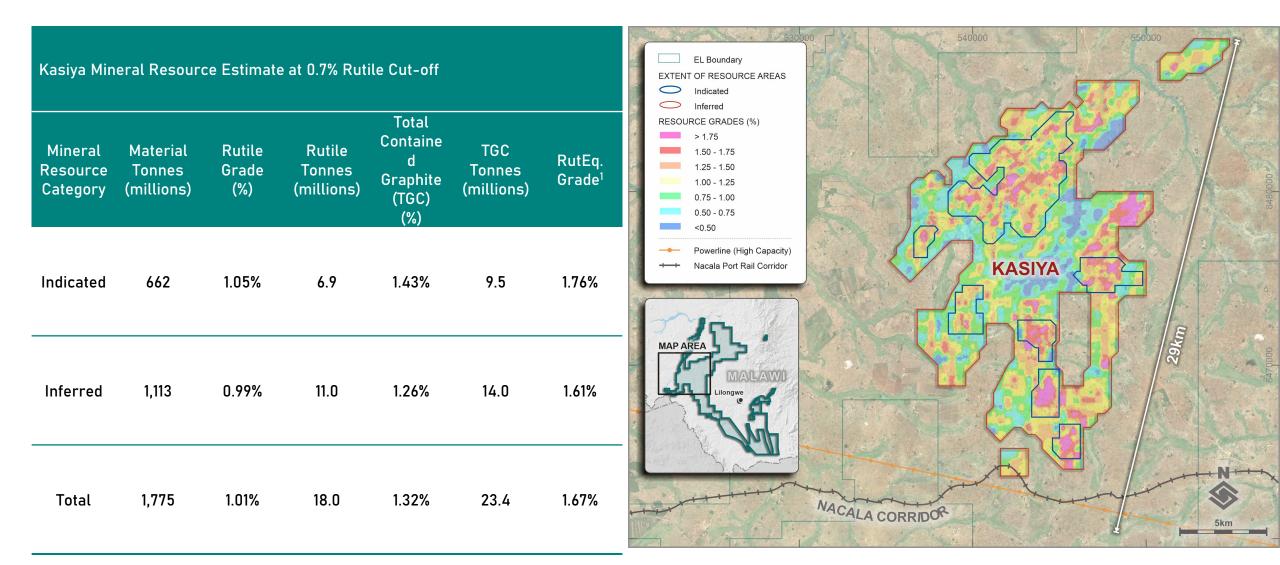
The information in this presentation that relates to the Mineral Resource Estimate is extracted from the announcement dated 5 April 2022 which is available to view on <u>www.sovereignmetals.com.au</u>. SVM confirms that a) it is not aware of any new information or data that materially affects the information included in the announcement; b) all material assumptions included in the announcement continue to apply and have not materially changed; and c) the form and context in which the relevant Competent Persons' findings are presented in this report have not been materially changed from the announcement.

The information in this presentation that relates to the Metallurgy is extracted from the announcement dated 16 June 2022 which available to view on <u>www.sovereignmetals.com.au</u>. SVM confirms that a) it is not aware of any new information or data that materially affects the information included in the announcement; b) all material assumptions included in the announcement continue to apply and have not materially changed; and c) the form and context in which the relevant Competent Persons' findings are presented in this report have not been materially changed from the announcement.

EXPANDED SCOPING STUDY OUTCOMES

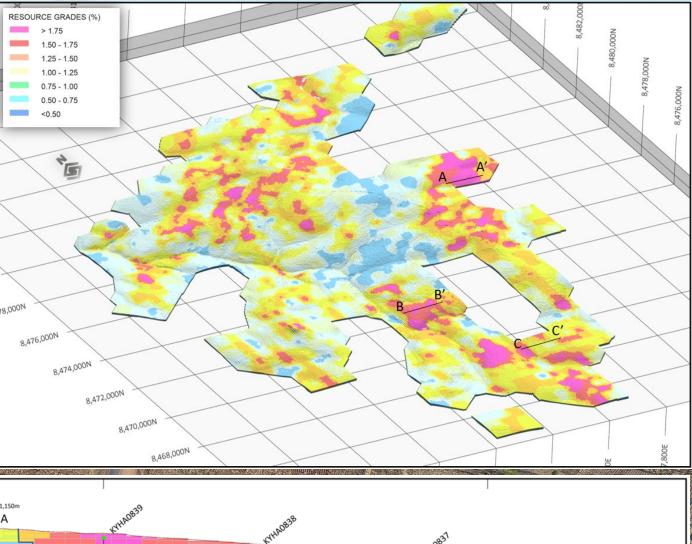
EXCEPTIONAL ECONOMICS CONFIRM KASIYA AS AN INDUSTRY-LEADING SOURCE OF CRITICAL RAW MATERIALS

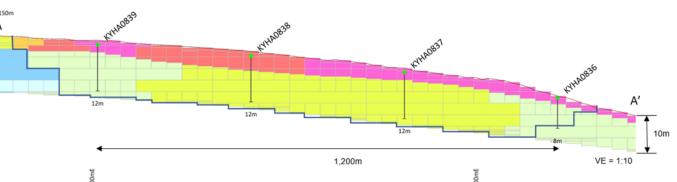
Key Economic Results											
US\$1,537M After Tax NPV ₈	36% After Tax IRR	US\$12,038M LOM Revenue	US\$323M Ave. Annual EBITDA	US\$320/t Operating Cost per tonne of product	Сар	5372M Dex to 1 st oduction					
Two stage approach Stage 1: 12Mtpa o 	re processed in yea	Annual Production	– Rutile		242ktpa*						
 Stage 2: Increase (funded from pro 		essed in years 5-25	Annual Production		155ktpa*						
Life of Mine		25 years	Head grade – Rutil		1.14%						
Throughput (LOM)		21.6Mtpa	Head grade – Grap		1.52%						


Expanded Scoping Study Highlights

- Potential to become a major producer in both the natural rutile and graphite markets
- Low capital costs to first production due to exceptional existing available infrastructure offering significant cost reductions and providing optionality and scalability
- Low operating cost and high margins due to;
 - deposit size
 - zero strip ratio of soft, friable material
 - high-grade mineralisation from surface
 - amenability to hydro-mining
 - conventional processing
 - deposit location
 - low transport costs

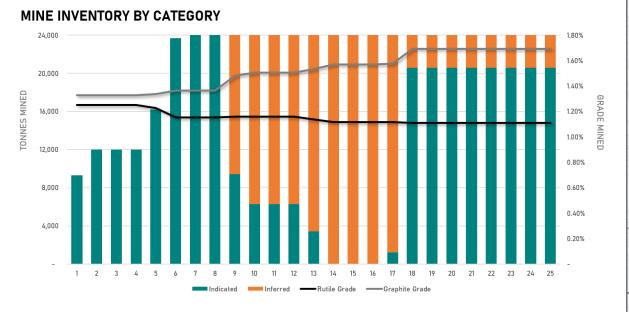
Kasiya Mineral Resource Estimate

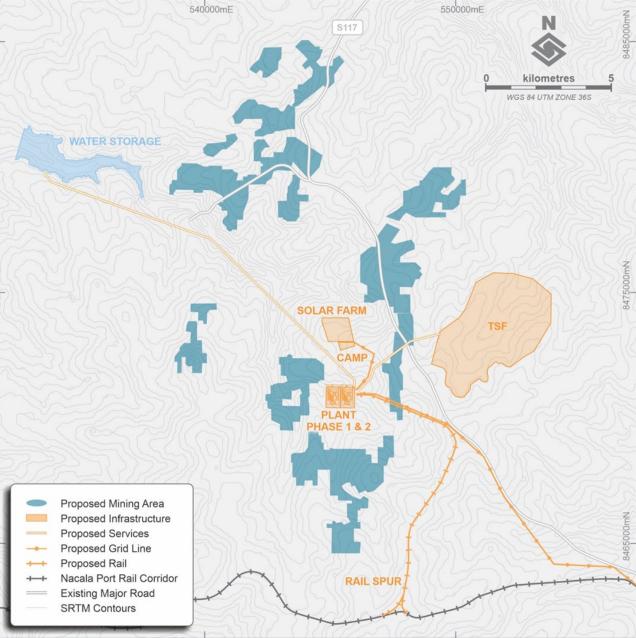



Source: Sovereign Metals

1. Rutile Grade x Recovery (98%) x Rutile Price (US\$1,308/t) + Graphite Grade x Recovery (62%) x Graphite Price (US\$1,085/t) / Rutile Price (US\$1,308/t). All assumptions taken from the Company's Expanded Scoping Study released 16 June 2022

Simple Geology High grade mineralisation from surface


- Rutile & graphite mineralisation lies in laterally extensive flat "blanket" style bodies
- All mineralisation occurs in a single, large, and coherent deposit with much of the highgrade material occurring within the top ~5 metres from surface
- Pits designed to depths averaging 10-12m



Efficient Mine Plan

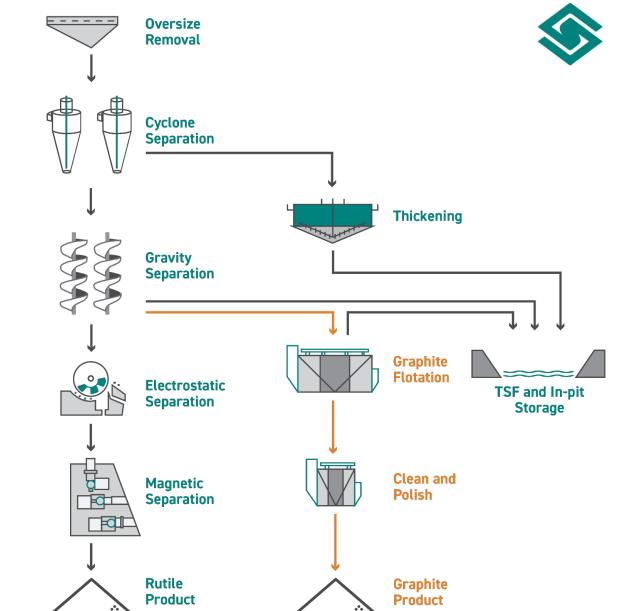
- Targeted mine plan to minimise footprint and impact
- Over 60% of inventory taken from Indicated resources
- Key infrastructure centrally located

Simple Mining Hydro-mining a proven mining technique

- Kasiya's mineralisation largely homogenous and relatively consistent with material conducive to hydro-mining
- Long history of successful hydro-mining of heavy mineral deposits across southern Africa
- Numerous African heavy minerals operations use hybrid hydro / dozer mining methods that provide significant operational flexibility

Simple Processing

Premium-grade rutile produced via conventional flowsheet


- Robust metallurgy now confirmed from two distinct bulk test work programs
- Significant interest from Tier 1 rutile off-takers
 - First rutile offtake MoU signed with US-based welding product distributor Hascor International
- Conventional graphite flotation plant at marginal incremental cost

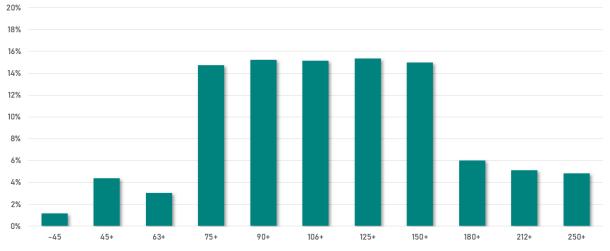
Stand-out Rutile Metallurgical Recoveries

98%

96% TiO₂ Premium Specification Rutile

96% TGC Coarse Flake High-grade Graphite

Premium Rutile Product

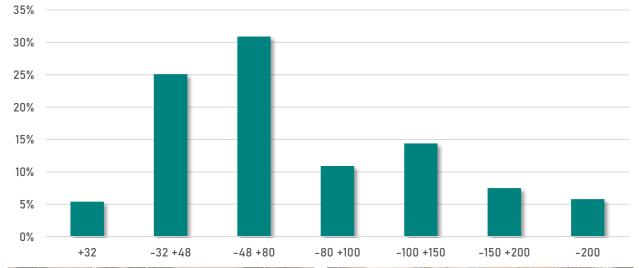


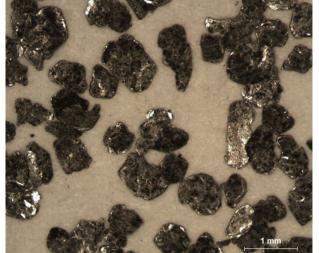
		Kasiya	Peer Comparisons			
Constituent		98% Recovery Product	Sierra Rutile (Iluka)	Base Resources (Kwale)		
Ti0 ₂	%	96.0	96.3	96.2		
ZrO ₂ +HfO ₂	%	0.21	0.78	0.72		
SiO ₂	%	0.90	0.62	0.94		
Fe ₂ 0 ₃	%	0.94	0.38	1.25		
Al ₂ O ₃	%	0.90	0.31	0.23		
Cr ₂ 0 ₃	%	0.14	0.19	0.17		
V ₂ O ₅	%	0.70	0.58	0.52		
Nb ₂ O ₅	%	0.40	0.15	-		
P ₂ O ₅	%	0.013	0.01	0.00		
MnO	%	0.02	0.01	0.03		
MgO	%	0.003	0.01	0.10		
CaO	%	0.003	0.01	0.04		
S	%	0.002	<0.01	-		
U+Th	ppm	32	26	53		

KASIYA RUTILE PRODUCT

SIZING

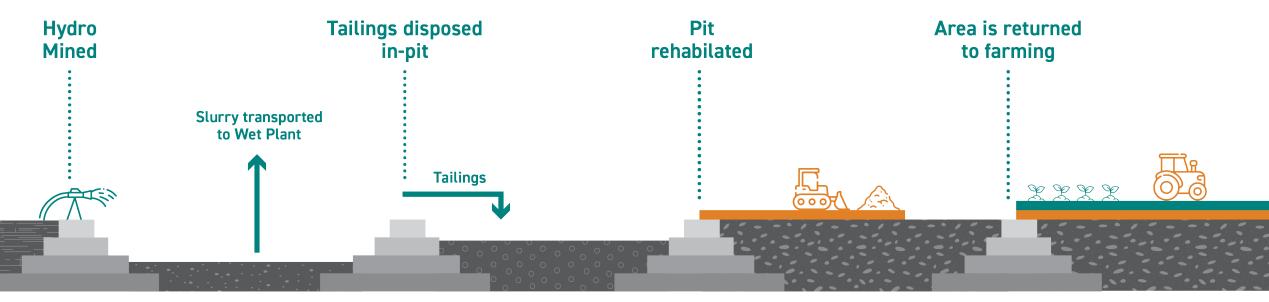
CATERGORY


UPPER LIMITED (MICRON µm)



Premium Graphite Specifications

Partic	le Size	Carbon	Weight Distribution	Flake Category	
Tyler Mesh	Micron (µ)	(%)	(% w/w)		
+32	+500	96.0	5.4	Super Jumbo	
-32 +48	-500 +300	96.6	25.1	Jumbo	
-48 +80	-300 +180	96.7	30.9	Large	
-80 +100	-180 +150	96.8	10.9	Medium	
-100 +150	-150 +106	96.11	14.4	Small/Medium	
-150 +200	-106 +75	95.8	7.5	Small	
-200	-75	93.8	5.8	Amorphous	
То	tal	96.3	100		

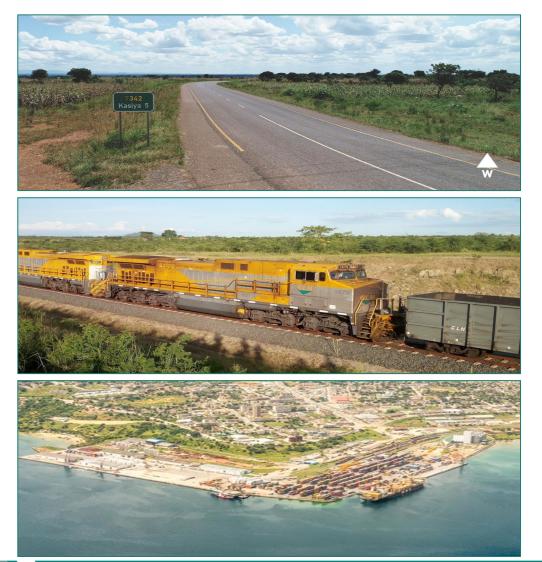


Simple Progressive Rehabilitation

Socially responsible and sustainable

- In-pit disposal minimises disturbance
- Progressive returning of land to communities
- Efficient closure campaign at end of mine life

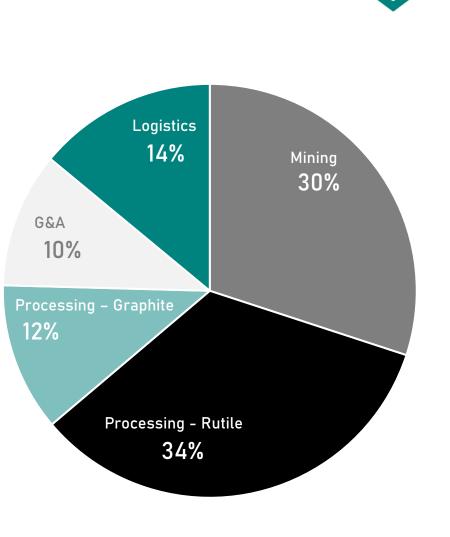
Sustainable, Low Carbon and Reliable Power Solution for Kasiya


- Hybrid hydro-generated grid power and solar power system
- JCM Power appointed to design preliminary IPP solution

 currently commissioning two solar projects in Malawi
- Solar array with a supporting Battery Energy Storage Solution capable of supplying 100% of the Project's power requirements (28MW) during day and evening

Exceptional Logistics: Nacala Logistics Corridor and Sena Rail Line provide Kasiya access to global markets

Conservative Commodity Prices Applied

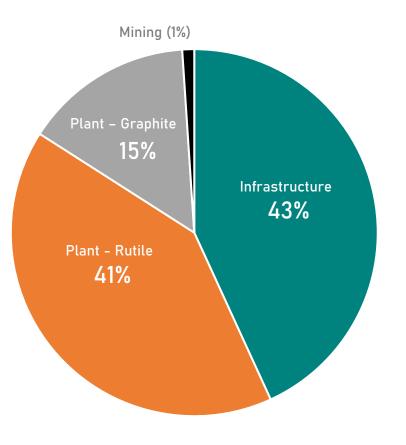

Rutile Price Assumption											
	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	Long term
TZMI Forecast Price – Base (real)	\$1,336	\$1,334	\$1,314	\$1,336	\$1,328	\$1,311	\$1,287	\$1,255	\$1,221	\$1,180	\$1,180
Bulk sales (pigment inducement price)	\$1,336	\$1,334	\$1,314	\$1,336	\$1,328	\$1,311	\$1,287	\$1,255	\$1,221	\$1,180	\$1,180
Bagged sales (25% premium)	\$1,670	\$1,667	\$1,642	\$1,670	\$1,660	\$1,639	\$1,609	\$1,569	\$1,526	\$1,475	\$1,475
Stage 1 Production (60%:40%)	\$1,470	\$1,467	\$1,445	\$1,470	\$1,461	\$1,442	\$1,416	\$1,381	\$1,343	\$1,298	\$1,298
Full Production (75%:25%)	-	-	-	-	-	\$1,393	\$1,367	\$1,334	\$1,297	\$1,254	\$1,254
LoM Average											\$1,308

te Price Assumption				
		Distribution	Forecast Price	Contribution
Flake Category	Micron (µm)	(% w/w)	US\$/t	US \$ /t
Super Jumbo	+500	5.4	\$2,100	\$114
Jumbo	-500 +300	25.1	\$1,600	\$402
Large	-300 +180	30.9	\$1,085	\$335
Medium	-180 +150	10.9	\$775	\$86
Medium/Small	-150 +106	14.4	\$605	\$87
Small	-106 +75	7.5	\$515	\$38
Amorphous	-75	5.8	\$425	\$24
Tot	al	100	-	\$1,085

Operating Costs

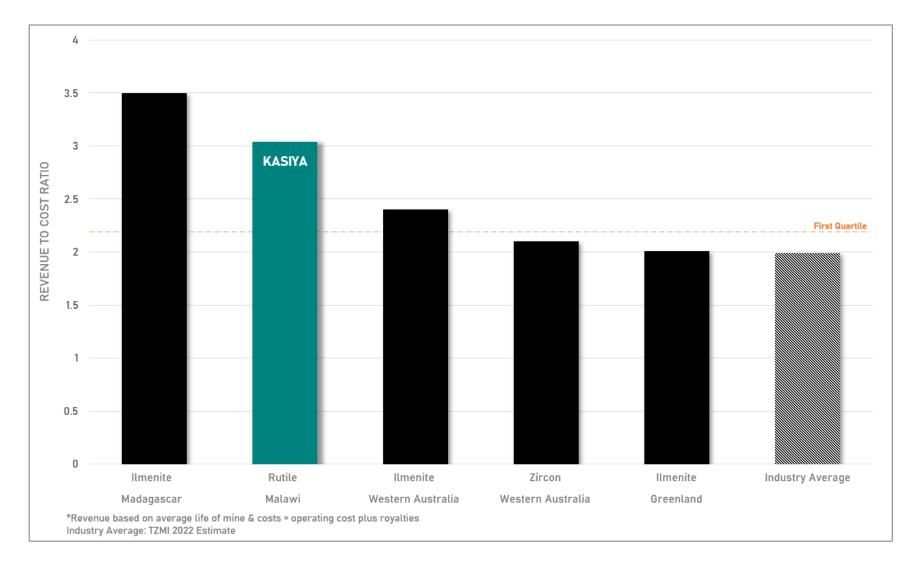
Low operating cost and high margins due to deposit size, zero strip ratio of soft, friable high-grade mineralisation from surface, amenability to hydro-mining, conventional processing, deposit location and low transport costs

	US\$/t	US\$/t	US\$/t	US\$/t
Description	Mined Tonne	Product	Rutile (incremental)	Graphite (incremental)
Mining	\$1.76	\$96	\$157	-
Processing – Rutile	\$1.98	\$108	\$178	-
Processing - Graphite	\$0.68	\$37	-	\$95
General & Administration	\$0.62	\$34	\$56	-
Total Mine Gate	\$5.04	\$275	\$390	\$95
Logistics	\$0.82	\$45	\$45	\$45
Total Operating Costs	\$5.86	\$320	\$435	\$140

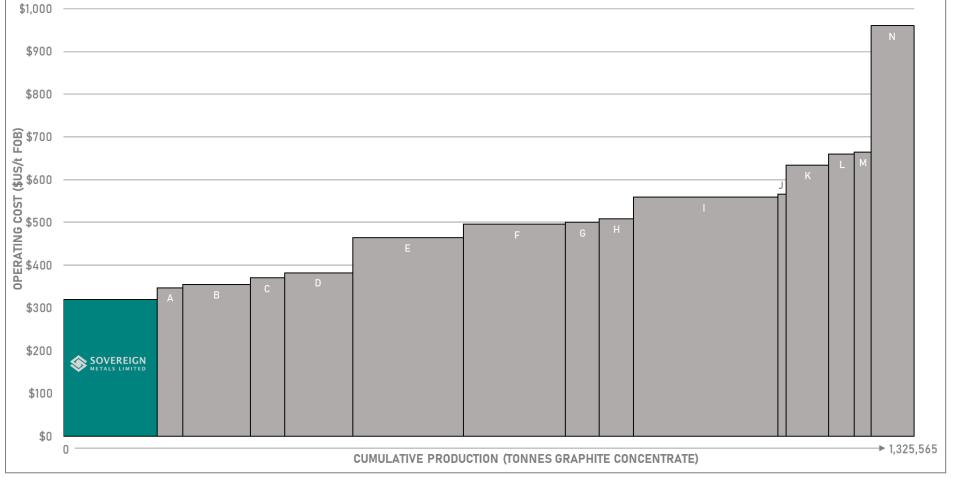


Capital Costs

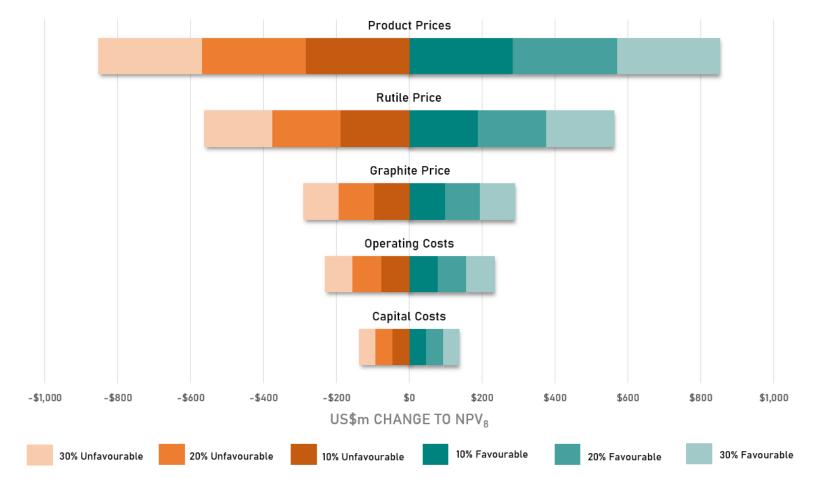
Low capital costs to first production due to exceptional existing available infrastructure offering significant cost reductions and providing optionality and scalability


	Stage 1	Stage 2
Description	US\$m	US\$m
Direct		
Mining	\$2.4	\$2.4
Plant – Rutile	\$93.6	\$93.6
Plant - Graphite	\$34.1	\$34.1
Infrastructure	\$98.8	\$98.7
Total Directs	\$228.9	\$228.8
Indirects		
Engineering, Procurement and Construction Management (EPCM)	\$28.3	\$22.9
Owner's Costs	\$16.3	\$2.8
Miscellaneous	\$12.9	\$4.6
Contingency (Stage 1: 30% & Stage 2: 20%)	\$85.9	\$51.8
Total Indirects	\$143.4	\$82.1
Total Start-up Capital	\$372.3	\$310.9

Kasiya: One of the Highest Revenue-to-Cash Cost Ratios in the Industry


- 3.0x revenue-to-cashcost ratio
- Cash margin of over 67% for the life of the operation
- Kasiya revenue based on long-term rutile price (real) of US\$1,254/t versus current spot price of +US\$2,200/t & longterm natural graphite basket price (real) of US\$1,085/t versus current equivalent spot price of US\$1,223/t

Lowest Cost Flake Graphite Project in the World


- Average life-of-mine FOB (Nacala) operating cost of US\$320/t of product (rutile + graphite)
- Incremental operating cost of US\$140/t reflecting graphite production as a coproduct

Robust Fundamentals for all Environments

SENSITIVITY ANALYSIS

CORPORATE & MARKET INFORMATION

Sovereign is aiming to develop an environmentally and socially sustainable operation to be a major supplier of highly sought-after natural rutile and graphite to global markets

NATURAL RUTILE

The purest, highest-grade natural form of titanium dioxide (TiO₂) and is the preferred feedstock in manufacturing titanium pigment and producing titanium metal

NATURAL GRAPHITE

Lightweight material with high thermal and electrical conductivity used across a range of industrial and technological applications. Most importantly as anode material for the expanding electric vehicle market

Kasiya: One Project - Two Critical Raw Materials

Batteries				•	•	•	•		S	v				•	•	•	I	Titanium and natural graphite classified as critical raw materials
Fuel Cells	√			•	I	<	•	 Image: A start of the start of	v			•	I	•	√	 Image: A start of the start of		by the US and EU Key drivers:
Wind	•					•		•	S				•		v		v	 Scarceness of supply
Solar						•	•	•		S		S	v	 Image: A start of the start of	 Image: A start of the start of	S	I	 China-controlled supply chains
	REEs	Borates	Cobalt	Natural Graphite	Lithium	Titanium	Silicon	Molybdenum	Manganese	Tin	Chromium	Silver	Aluminium	Nickel	Iron Ore	Copper	Lead	 Decarbonisation /Energy Transition

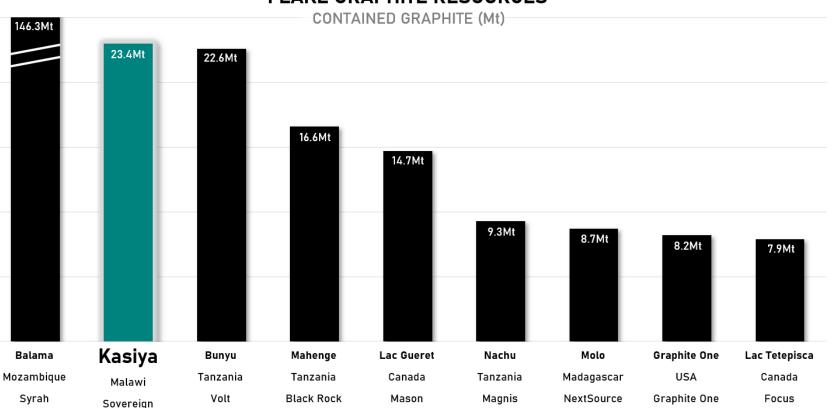
Increasing Supply Risk

Kasiya: Largest Rutile Deposit Ever Discovered

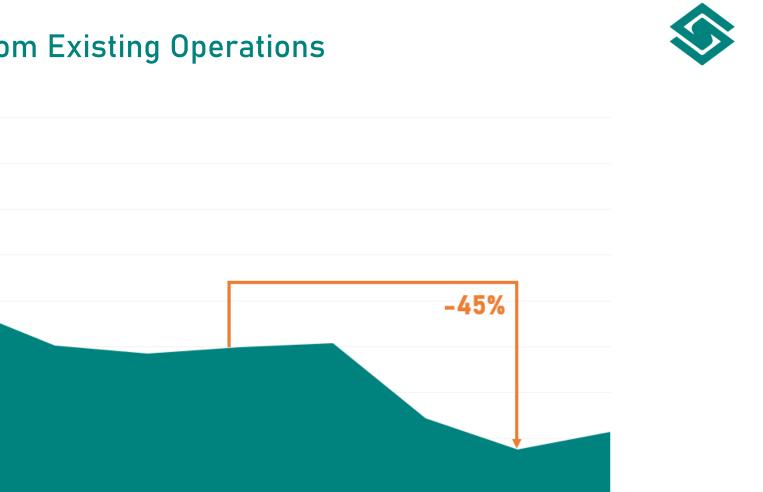
- First significant rutiledominant deposit discovered in over 50 years
- More than double the rutile resource of nearest peer
- High-grade mineralisation commonly grading 1.2% to 2.0% rutile in the top 3-5m from surface

CONTAINED RUTILE (Mt) 18.0Mt 8.1Mt 2.0Mt 0.7Mt Sierra Rutile Kasiya Balranald Kwale Sierra Leone Australia Kenya Malawi Iluka Resources Iluka Resources **Base Resource** Sovereign

MAJOR RUTILE DOMINANT RESOURCES


Source: Sovereign Metals

Kasiya: One of the Largest Flake Graphite Resources in the World

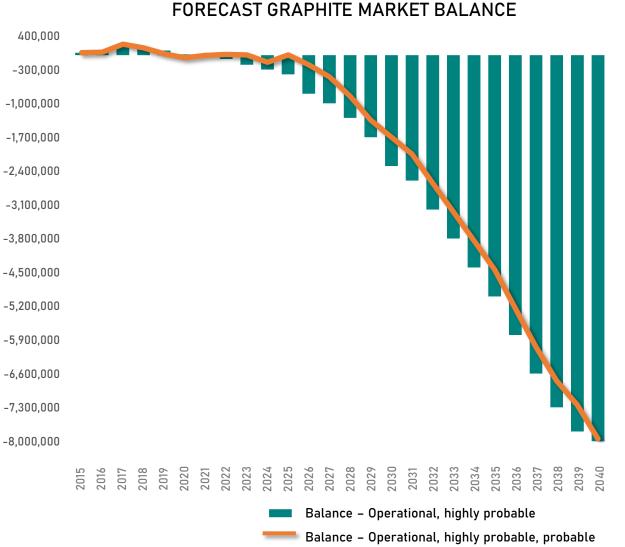

- Graphite occurs in broad association with rutile
- Kasiya graphite is highly crystalline and of high purity

 important features
 required for use in lithiumion battery anodes
- Comprehensive bulk scale metallurgy and downstream test work program developed to confirm commercial potential

FLAKE GRAPHITE RESOURCES

Expected Global Rutile Supply From Existing Operations

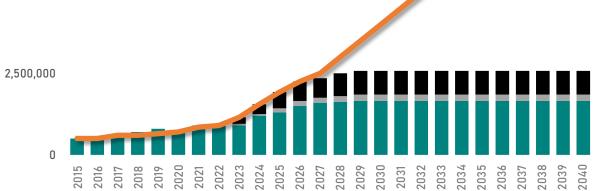
1,000


TiO₂ UNITS (kt)

Natural Rutile

entered supply deficit in 2017

Graphite forecast to be in extreme deficit: Li-Ion batteries the growth driver



12,500,000

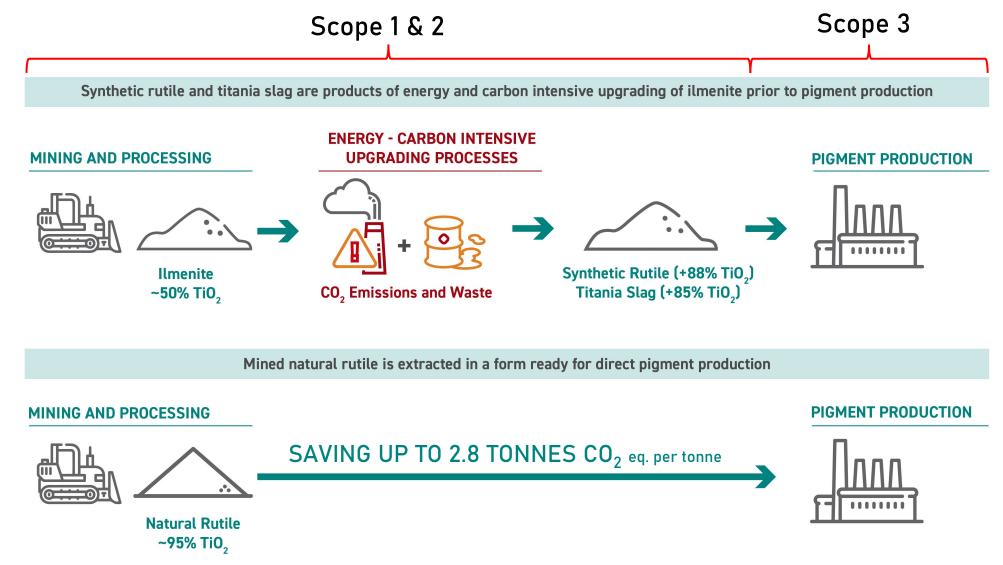
10,000,000

7,500,000

5,000,000

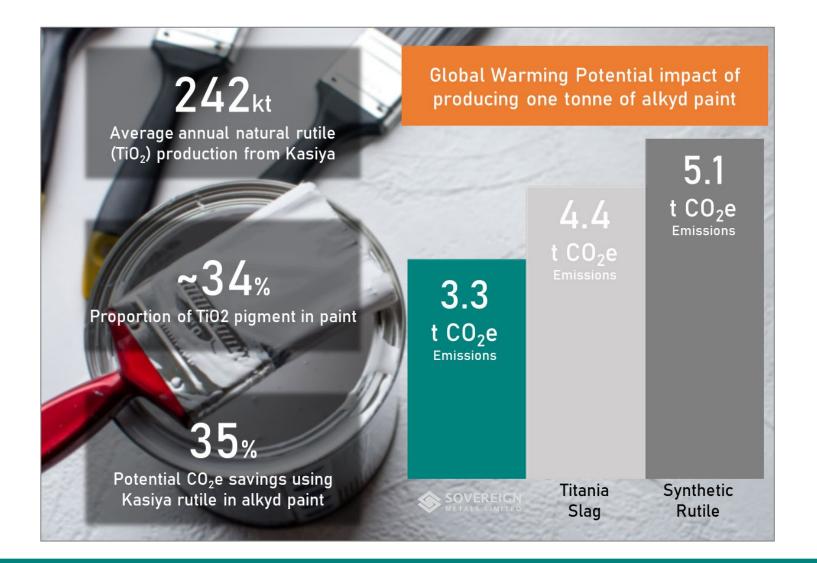
Probable additional tonnes 📖 Highly Probable additional tonnes 🔜 Operational supply

Total Demand

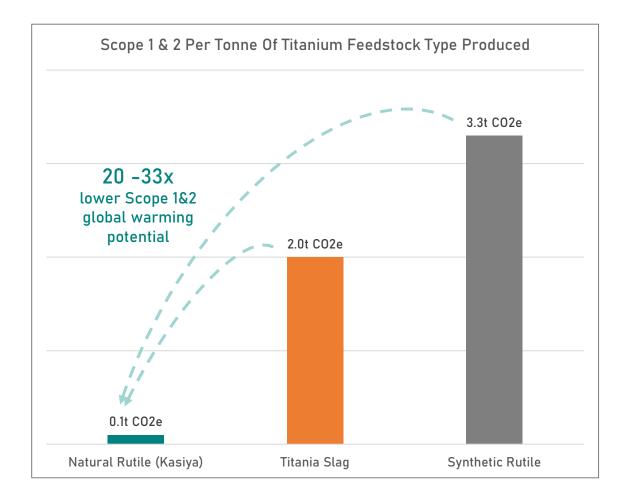

Natural Rutile – the purest natural form of titanium

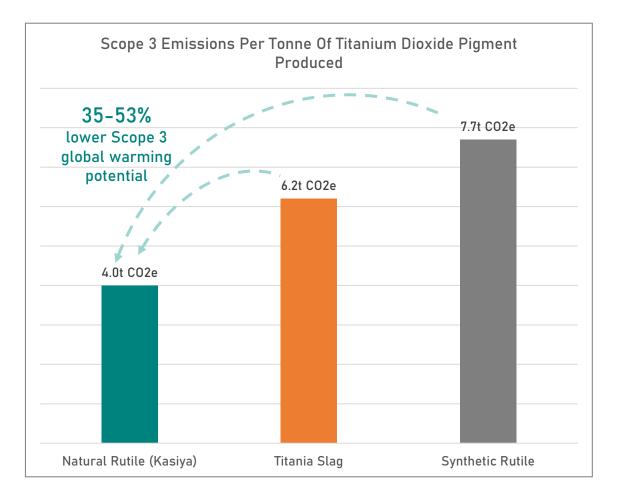
HIGH GRADE CHLORIDE PIGMENT FEEDSTOCK (+80% TiO₂) SUPPLY BY TYPE ~2.7*Mt* TiO₂ Market Size (2020) Natural Direct use Rutile material 10% Natural Rutile +US\$2,200/t * UGS 11% Syn-Rutile Upgraded via 27% energy and carbon intensive processes: Titania Slag Ilmenite (+85% TiO₂) Chloride Synthetic Rutile +US\$400/t * Slag (+88% TiO₂) 52%

Natural rutile – a lower carbon footprint alternative



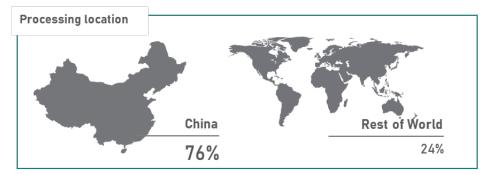
Natural Rutile – critical to lowering the Titanium industry's carbon footprint

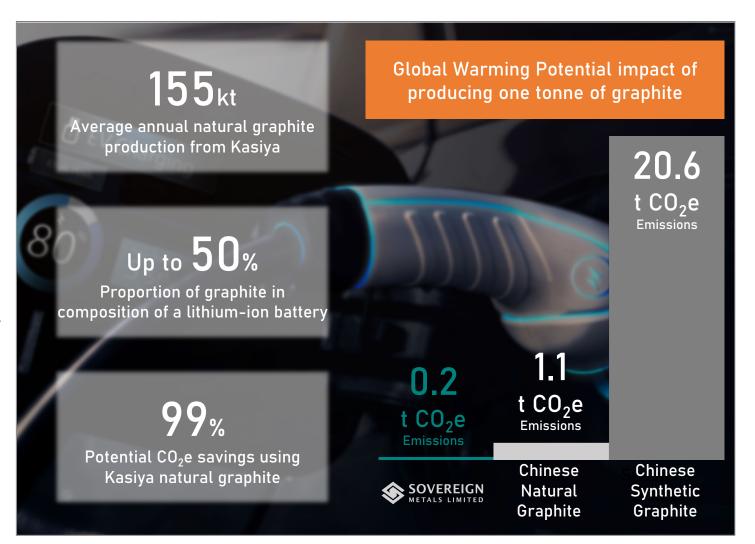



- Titanium dioxide pigment and titanium metal industries targeting reduced carbon emissions
- Natural rutile produced at Kasiya has significantly lower GWP compared to alternative feedstocks
- Natural rutile from Kasiya could hold the solution to developing lowcarbon footprint products including "low carbon paints"

Life Cycle Assessment shows Carbon Emissions Reduction Potential

Chinese Graphite Dominance Threatens Electric Vehicle Ambitions


Synthetic Graphite


Produced from needle coke via graphitization process.

Natural Graphite

Extracted from mining (natural graphitization occurred over time) and purified.

Malawi

Stable, Transparent Jurisdiction Looking to Benefit From Mining

Member country of the Commonwealth

Attracting significant investment

Demonstrable aspiration for mining

Excellent operating infrastructure

GDP per capita of US\$636


Malawi remains one of the poorest countries in the world despite making significant economic and structural reforms to sustain economic growth

171 out of 189 in the Human Development Index

Young population eager for jobs and learning skills; median age is 18 years – population forecast to double by 2038

Agriculture-dependant economy

Agriculture accounts for 80% of employment – but vulnerable to external shocks

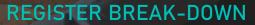
Upcoming news flow & next steps

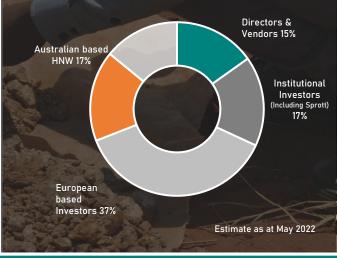
Continued product marketing and agreements regarding potential offtake

Kasiya Pre-Feasibility Study and ESIA baseline surveys underway with appointments to owner's team and consulting team

Infill drilling to increase Measured and Indicated resources for Ore Reserve for the PFS

CAPITAL STRUCTURE


470,725,023 Shares on Issue¹ 11,255,125 Unlisted Options ¹ (Exercise price: \$0.80)


12,440,000

Performance Rights (milestone vesting conditions) A\$228m / £123m Un-Diluted Market Capitalisation @A\$0.485 / 26.00p²

~A\$20m Cash³

1 & 2. Closing price and equities as at 27 June 2022 3. Cash at Bank – 31 May 2022

Thank you

æ

Appendix - Peer Sources

MINERAL SANDS PEER INFORMATION

Reference	Company	Project	Stage of Development	Revenue to Cost ratio	Source
Ilmenite -Madagascar	Base Resources	Toliara	FS Complete	3.5	ASX Announcement: https://wcsecure.weblink.com.au/pdf/BSE/02426235.pdf
Ilmentie – Western Australia	Strandline	Coburn	Construction	2.4	Investor Presentation: https://www.strandline.com.au/irm/PDF/35d74951-750a-4bdf-8234-
					62e58a2d10a9/InvestorPresentation
Zircon – Western Australia	Sheffield Resources	Thunderbird	FS Complete	2.1	ASX Announcement: https://www.sheffieldresources.com.au/site/PDF/1b39388b-3a10-4733-
					9976-167a3d4a2333/BFSUpdateMateriallyImprovesProjectEconomics
Ilmenite – Greenland	Bluejay Mining	Dundas	FS Complete	2.0	Investor Presentation: https://bluejaymining.com/wp-content/uploads/2021/09/Jay-Corporate-
					September-2021-1.pdf

GRAPHITE PEERS INFORMATION

	Company	Project	Stage of Development	Operating Costs (FOB) <i>US\$/t</i>	Steady State Production <i>tpa</i>	Current Production <i>tpa</i>	Source
А	Walkabout Resources	Lindi	Construction	347	40,000	n/a	ASX Announcement: Updated DFS Confirms Standout Graphite Project(7 Mar 2019)
В	Renascor	Siviour	DFS Complete	355	105,000	n/a	ASX Announcement: Siviour Definitive Feasibility Study (11 Nov 2019)
С	Mason Graphite ¹	Lac Gueret	FS Complete	370	51,865	n/a	SEDAR FILING: NI 43-101 Technical Report: Feasibility Study Update of the Lac Gueret Graphite Project (12 Dec 2018)
D	Nouveau Monde ¹	Matawinie	Construction	382	100,000	n/a	SEDAR FILING: NI 43-101 Technical Feasibility Study Report for the Matawinie Graphite Project (10 Dec 2018)
Е	Syrah Resources ²	Balama	Production	464	184,000	46,000	ASX Announcement: Q1 2022 Quarterly Activities Report (27 Apr 2022)
F	NextSource Materials	(Molo Phase 2)	PEA Complete	496	150,000	n/a	Press Release: MD&A March 2022 (16 May 2022)
G	Ecograf	Epanko	BFS Complete	500	60,000	n/a	ASX Announcement: Positive Response to Proposed US\$60m Epanko Debt Financing (10 Mar 2019)
Н	SRG Mining	Lola	FS Complete	508	55,000	n/a	SEDAR FILING: Lola Graphite Project NI 43-101 Technical Report - Feasibility Study (16 Aug 2019)
Ι	Magnis Energy	Nachu	BFS Complete	559	220,000	n/a	ASX Announcement: Nachu Bankable Feasibility Study Finalised (31 Mar 2016)
J	NextSource Materials	(Molo Phase 1)	Construction	566	17,000	n/a	SEDAR Filing: 2021 Annual Information Form (28 Sep 2021)
К	Triton Minerals	Ancuabe	DFS Complete	634	60,000	n/a	COMPANY PRESENTATION: Developing the World Class Ancuabe Graphite Project (16 Feb 2022)
L	Northern Graphite ³	Bisset Creek	FS & PEA	660	44,000	n/a	COMPANY PRESENTATION: Building the leading public graphite company (May 2022)
М	Volt Resources	Bunyu (Stage 1)	FS Complete	664	23,700	n/a	ASX Announcement: Positive Stage 1 Feasibility Study For Bunyu Graphite Project, Tanzania (30 Jul 2018)
Ν	Graphite One	Graphite One	PEA Complete	960	60,000	n/a	NI 43-101 Preliminary Economic Analysis On the Graphite One Project (30 Jun 2017)

Appendix - Peer Sources

RUTILE MINERAL RESOURCES INFORMATION

Ref	Company	Project	Status	Source
1	Iluka Resources	Sierra Rutile	Production & Development	Iluka Resources Limited's 2021 Annual Report (released on ASX 24/02/2022)
2	Iluka Resources	Balranald	Development	lluka Resources Limited Annual Ore Reserve and Resources as at 31 December 2021: https://iluka.com/CMSPages/GetFile.aspx?guid=213396d8-1630-49ff-8d1b-fe4b1ee71e7e
3	Base Resources	Kwale	Production	Updated Kwale North Dune and maiden Bumamani Mineral Resource Estimate (released on ASX 19/02/2021)

Detailed Mineral Resources by Category

1. Iluka Resources – Sierra Rutile			
	Mt	Rutile Grade*	In-situ Rutile
Measured	178	1.4%	2.4
Indicated	309	1.0%	3.1
Inferred	265	1.0%	2.6
Total	752	1.1%	8.1
2. Iluka Resources - Balranald			
	Mt	Rutile Grade*	In-situ Rutile
Measured	12	3.8%	0.5
Indicated	28	4.3%	1.2
Inferred	13	3.0%	0.4
Total	53	3.7%	2.0
3. Base Resources - Kwale			
	Mt	Rutile Grade*	In-situ Rutile
Measured	160	0.3%	0.3
Indicated	91	0.2%	0.2
Inferred	13	0.2%	0.2
Total	254	0.2%	0.7

* Rutile grade calculated as HM% times rutile % of assemblage

Appendix - Peer Sources

GRAPHITE RESOURCE INFORMATION

Ref	Company	Project	Project Status	Source
1	Syrah Resources	Balama	Production	Syrah Resources Limited's 2021 Annual Report (released on ASX 24/02/2022)
2	Volt Resources	Bunyu	FS Complete	Volt Resources Limited's 2021 Annual Report (released on ASX 29/09/2021)
3	Black Rock Mining	Mahenge	FS Complete	ASX Announcement: Black Rock Mining confirms 25% increase in Measured Mineral
				Resource, now the largest in class globally (released 3/02/2022)
4	Mason Graphite	Lac Gueret	FS Complete	Mason Graphite's Corporate Presentation released July 2021
5	Magnis Energy	Nachu	BFS Complete	Magnis' Corporate Presentation released February 2022
6	NextSource Materials	Molo	PEA Complete	https://www.nextsourcematerials.com/graphite/molo-graphite-project/
7	Graphite One	Graphite One	PEA Complete	https://www.graphiteoneinc.com/graphite-one-increases-tonnage-grade-and-contained-
				graphite-of-measured-and-indicated-and-inferred-resources-in-updated-mineral-
				resource-estimate/
8	Focus Graphite	Lac Tetepisca	Resource	https://focusgraphite.com/focus-graphite-reports-major-maiden-mineral-resource-
	· · · · · · · · · · · · · · · · · · ·			estimate-at-lac-tetepisca-quebec/

Detailed Mineral Resources by Category

1. Syrah Resources – Balama			
	Mt	TGC (%)	In-situ TGC
Measured	23	17.5%	4.0
Indicated	378	11.2%	42.3
Inferred	1,020	9.8%	100.0
Total	1,421	10.3%	146.3
2. Volt Resources - Bunyu			
	Mt	TGC (%)	In-situ TGC
Measured	20	5.3%	1.1
Indicated	155	5.0%	7.8
Inferred	286	4.9%	14.0
Total	461	4.9%	22.6
3. Black Rock Mining – Mahen	ge		
	Mt	TGC (%)	In-situ TGC
Measured	32	8.6%	2.7
Indicated	85	7.8%	6.6
Inferred	97	7.4%	7.2
Total	213	7.8%	16.6
4. Mason – Lac Gueret			
	Mt	TGC (%)	In-situ TGC
Measured	19.0	17.9%	3.4
Indicated	46.5	16.9%	7.9
Inferred	17.6	17.3%	3.4
Total	83.2	17.6%	14.7

5. Magnis - Nachu			
	Mt	TGC (%)	In-situ TGC
Measured	63	4.7%	3.0
Indicated	61	5.7%	3.5
Inferred	50	5.8%	2.9
Total	174	5.4%	9.3
6. NextSource - Molo			
	Mt	TGC (%)	In-situ TGC
Measured	160	0.3%	0.3
Indicated	91	0.2%	0.2
Inferred	13	0.2%	0.2
Total	254	0.2%	0.7
7. Graphite One – Graphite One			
	Mt	TGC (%)	In-situ TGC
Measured	2	8.0%	0.1
Indicated	9	7.7%	0.7
Inferred	92	8.0%	7.3
Total	103	8.0%	8.2
8. Focus – Lac Tetepisca			
	Mt	TGC (%)	In-situ TGC
Measured	-	-%	-
Indicated	59	10.6%	6.3
Inferred	15	11.1%	1.6
Total	74	10.6%	7.9