

Black Cat Syndicate Limited ("**Black Cat**" or "the Company") is pleased to provide an update on regional exploration activities at the 100% owned Coyote Gold Operation ("Coyote").

HIGHLIGHTS

- Geophysical re-processing and re-interpretation has been completed, including re-processing of legacy company and government aeromagnetic, airborne EM, gravity, radiometric and seismic data. This work has highlighted and refined additional Coyote-style anticline targets south of Coyote Central and additional potential magmatic Ni-PGE targets near Gremlin. Surface sampling was conducted over five of these targets during this program. Key outcomes include:
 - New regional geology model developed,
 - Multiple potential Coyote-style Axial Core Zones identified, and
 - 5 additional magmatic Ni-PGE targets at Gremlin.
- Surface sampling has been completed at Coyote across several targets, including near-mine gold targets and the
 magmatic Ni-PGE prospect at Gremlin, ~20km south of the processing facility. Sampling included termite mounds
 and spinifex needles to "see through" thin, post-mineralisation cover sand. Key outcomes include:
 - New anomalies confirmed at Coyote Syncline, Lewis Granite and Track Syncline,
 - Snork prospect expanded,
 - Near surface anomalism identified at Pebbles East, along the Tanami Fault, and
 - Ni-PGE mineralisation at Gremlin reinforced.

Figure 1: Termite mound sampling at Coyote.

Black Cat's Managing Director, Gareth Solly, said: "Our new geology model combined with applying low-cost, sampling techniques has identified multiple exciting anomalies. The thin post-mineralisation cover around Coyote has historically been challenging for exploration, relying on RAB or aircore drilling to sample below cover. These new sampling techniques enable us to rapidly test our new geology model in the field. We have let the termites and spinifex bushes do the hard work over large areas and now plan to capitalise on the results of that work."

SNAPSHOT – COYOTE GOLD OPERATION

100% Controlled by Black Cat

819km² of highly prospective ground, 100% owned.

Background

- Open pit and underground workings to a depth of ~320m below surface, which produced a combined ~211koz @ 4.9g/t Au @ 95.8% recovery.
- Current Resource of 645koz @ 5.5g/t Au, including Coyote Central Resource of 430koz @ 8.5g/t Au one of Australia's highest grade gold deposits.
- Care and maintenance since 2013.
- No systematic exploration undertaken for ~10 years, prior to Black Cat's purchase.
- The July 2023 Scoping Study¹ included planned production of 200koz Au over the first 5 years with an All-in Sustaining Cost ("AISC") of \$1,586/oz.

Only Infrastructure in Place for 200km

- <1km from Tanami Highway.</p>
- 180+ person camp and offices, partially sublet to several other companies.
- Mines and key targets on Mining Leases.
- 300ktpa processing facility with potential to upgrade.
- Airstrip.
- Processing water readily available.

Significant Opportunities at All Stages

- Since completing the Coyote acquisition in June 2022, Black Cat has assessed the opportunities at Coyote based on geology, maturity and risk/reward. The segments defined at Coyote are:
 - <u>Covote Central:</u> mineralisation over ~1,200m in strike and down to ~700m in depth. Current Resource contains 356koz @ 14.6g/t Au and the Coyote Central produced 179koz @ 6.0g/t Au historically from underground, open pits and surface paleochannels.
 - <u>Covote West:</u> a 2.5km long, highly prospective zone of near-surface anomalism in a potential fault offset position from Covote Central which appears to be plunging to the west. The area lacks systematic testing.
 - <u>Coyote East:</u> This area hosts numerous near mine opportunities and drilling has largely been ineffective.
 - <u>Bald Hill:</u> located 30km from the processing facility with historical open pits producing 42koz @ 2.7g/t Au. Bald Hill remains open and has potential to increase the current open pit Resource of 198koz @ 3.6g/t Au.
 - <u>Regional:</u> Numerous high priority targets including Coyote Syncline, Road Runner, Penfold and Gremlin (Ni-Co-PGE), Gardner Dome (REE, Au) requiring testing.

Analogous to One of the World's Best Gold Mines, 200km Away

Coyote is within the same structural corridor as Callie (14Moz), with both deposits hosted in anticlines of folded sediments on splays off the Tanami Fault. There are multiple mineralisation styles within the Callie area, while currently only a single mineralisation model has been historically applied and tested at Coyote.

Figure 2: Regional map of the Coyote Gold Operation showing the location of Resources and large-scale fault architecture

COYOTE REGIONAL EXPLORATION ACTIVITIES

Geophysical Reprocessing and Regional Model Update

Black Cat has completed a geophysical reprocessing campaign of open file, legacy company and multi-client data, including aeromagnetics, radiometrics, EM and 2D seismic data. An updated 1:20k scale geology interpretation of the Coyote-Gremlin region has been completed, covering the highly prospective Tanami Fault corridor, a known fertile structural corridor that hosts the world-class Callie (14Moz) deposit ~200km along strike to the east. As part of this exercise, the Geoscience Australia seismic line 05GA-T3, that transects the Coyote Central (current Resource 430koz @ 8.5g/t Au) and Bald Hill (current Resource 198koz @ 3.6g/t Au) districts, was re-imaged.

Key outcomes of this geophysical work include:

New Regional Geology Model: The structural architecture of the Coyote Central and Bald Hill districts has been modelled in detail to identify areas for potential Coyote/Callie-style mineralisation and the regional geology interpretation has been updated.

Multiple Potential Coyote-Style Anticlines: the high-grade Coyote Central deposit is hosted in a regional-scale anticline with a low-displacement shear in the fold axis – the Axial Core Zone². The new geology model has highlighted several areas similar to Coyote Central. In particular, a detailed review of the Geoscience Australia 05GA-T3 seismic line has highlighted several <u>blind anticlines with potential low-displacement faults within the Tanami Fault corridor</u> to the southwest of Coyote Central. Two of these blind anticlines correspond with the Snork and Pebbles/Pebbles East prospects, which also have low-level surface geochemical anomalism (Figures 3 and 4). These prospects are now key regional targets.

5 Additional Magmatic Ni-PGE Targets at Gremlin: Gremlin is located ~20km southeast of Coyote Central. Aeromagnetic reprocessing has further refined the Gremlin anomaly, which has historically returned anomalous Ni-PGE mineralisation in gabbro³. To date, 5 similar aeromagnetic anomalies have been defined which may represent a larger mafic intrusive system prospective for magmatic Ni-PGE mineralisation.

Surface Sampling

Based on the new geology model, 1,940 samples (990 termite mounds, 950 spinifex bushes) were taken over newly identified prospects including Coyote Syncline, Track Syncline, Snork, Pebbles East, Lewis Granite and Gremlin (Figures 4, 5, 6, 7). Surface samples were collected from termite mounds and spinifex bushes and often both sample types were collected from the same location for cross-comparison of the two techniques. This is the first systematic termite mound and spinifex biogeochemical regional survey at Coyote. There have been similar but targeted historical surveys over known mineralisation, including an academic study over Coyote Central in 2008, that returned anomalous Au-As values adjacent to the deposit⁴. This historical work provides an important proof of concept in areas with thin sand cover.

Termite mound sampling is predicated on the idea that the material used to construct the mound is representative of the top several metres of the underlying geology as the termites return material to construct the mound. Biogeochemical sampling is based on the idea that plant roots gather nutrients from the underlying rocks and soil, and certain elements (e.g. As, Bi, S) may be preferentially concentrated in the leaves of the plants. Mature spinifex plant root systems can tap several 10's of metres below surface and may also provide a good sampling medium⁵.

Key outcomes of this geochemical work include:

New Anomalies Confirmed at Coyote Syncline, Lewis Granite, Track Syncline: The Coyote Syncline, Lewis Granite and Track Syncline prospects are in the hangingwall of the Coyote Fault. Several termite mound samples returned >2ppb Au, which is of similar tenor to that of historical surface sampling over Coyote Central⁶. The anomalous samples define an ~10km long linear trend, sub-parallel, to the Coyote Fault and are encouraging given that conventional historical soil sampling did not identify anomalism in these areas.

Snork Footprint Expanded: Snork is located south of Coyote Central and is in the immediate footwall of a splay off the Coyote Fault. Historical conventional soil sampling identified several narrow NW-SE trending >1ppb Au anomalies, and termite mound sampling to the south expanded the footprint of this anomalism.

Pebbles Extended Along Tanami Fault to the East: Pebbles East is located to the east of the outcropping Pebbles prospect, which is defined by a ~3km x 1km linear >2ppb Au in soil anomaly corresponding with outcropping mineralised quartz veins. Pebbles sits in the immediate footwall of the Tanami Fault. Pebbles East is located along strike from Pebbles, where the Tanami Fault goes under post-mineralisation fluvial sediments. Termite sample results identified a broad ~2km x 1km zone of >3ppb Au anomalism along the Tanami Fault and, significantly, demonstrates the potential for this method to see through thin post-mineralisation cover.

Gremlin Ni-PGE Targets Reinforced: Termite mound sample results returned anomalous Ni above, and in close proximity to, the interpreted mafic intrusions at Gremlin. Historical, surface soil sampling also returned anomalous Ni results at Gremlin, which demonstrates the potential for this technique to apply to base metals mineralisation in addition to gold.

Further Work

As a result of the success of this work, similar regional work is planned over an expanded area. Gold discovery is Black Cat's priority and drill planning over several targets including Snork and Pebbles East has commenced.

In addition, expressions of interest have been received in relation to Gremlin and these are being considered.

¹ ASX announcement 18 July 2023

ASX announcement 10 October 2022
 Gremliln RC-DD EIS Funded Drilling Report 2020. GSWA Report A122332.

⁴ Reid, N; Hill, S.M. and Lewis, D.M. "Spinifex biogeochemical expressions of buried gold mineralization: The great mineral exploration penetrator of transported regolith. Applied Geochemistry, V23, p. 76-84
⁵ See Appendix D of this release for details

⁶ WA Exploration Geochemistry Online Database: "Billiluna Map Sheet Vegetation Samples" <u>Surface assays - Western Australia Exploration Geochemistry Online</u> (warexgeochem.net.au)

Figure 3: Simplified interpretive bedrock geology map of the Coyote region overlain on re-processed aeromagnetic imagery (RTP1VD). Prospects referenced in this announcement are shown as is the extent of Black Cat's geophysical reprocessing.

Figure 4: Reprocessed seismic line 05GA-T03 showing only areas covered by Coyote and Bald Hill. Interpreted structures and marker horizons are shown for reference, as are the locations of prospects along the seismic line where mineralisation has been identified.

Figure 5: Map showing the termite mound sample locations coloured by Au (ppb) for the Coyote district. Also shown are contours of historical soil sample Au results for reference. The geology interpretation is coloured as per Figure 3.

Figure 6: Map of Gremlin showing the location of termite mound samples coloured by Ni grade and historical drill collars coloured by max Ni. The geology interpretation is coloured as per Figure 3.

Figure 7: Map of Gremlin showing the location of termite mound samples coloured by Pt+Pd grade and historical drill collars coloured by max Ni. The geology interpretation is coloured as per Figure 3.

PLANNED ACTIVITIES

Jan 2024:	Quarterly Report
Feb 2024:	Regional RC drilling results
13- 15 Feb 2024:	RIU Explorers Conference, Fremantle
28 Feb 2024:	Funding package end date
Mar 2024:	Half Year Financial Report
Mar 2024:	Funding package completion/drawdown date

For further information, please contact:

Gareth Solly Managing Director +61 458 007 713 admin@bc8.com.au

This announcement has been approved for release by the Board of Black Cat Syndicate Limited.

COMPETENT PERSON'S STATEMENT

The information in this announcement that relates to geology, and planning was compiled by Dr. Wesley Groome, who is a Member of the AIG and an employee, shareholder and option holder of the Company. Dr. Groome has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr. Groome consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information in the original reports, and that the form and context in which the Competent Person's findings are presented have not been materially modified from the original reports.

Where the Company refers to the exploration results, Mineral Resources, and Reserves in this report (referencing previous releases made to the ASX), it confirms that it is not aware of any new information or data that materially affects the information included in that announcement and all material assumptions and technical parameters underpinning the Mineral Resource and Reserve estimates with that announcement continue to apply and have not materially changed.

TABLE 1: TERMITE MOUND ULTRAFINE FRACTION SAMPLE RESULTS

D11918 483.326 7.801.947 5.9 1.6 0.407 1.20 1.17 2 2 D11918 483.335 7.802.041 1.21 2.3 0.575 1.04 1.55 1 5 D119180 483.335 7.802.041 0.0 1.1 0.588 1.04 1.55 1 - D119120 483.335 7.802.141 0.0 1.1 0.388 1.04 1.63.3 1 - D111924 483.337 7.802.200 7.8 1.4 0.448 2.84 2.52 2 2 1.0 1.049.8 2.84 2.51 2.24 2 3 1.011924 483.387 7.802.392 7.4 0.7 0.465 2.51 2.24 2 3 1.011924 483.387 7.802.392 7.6 1.5 0.554 2.26 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D111917 483.384 7.00.001 4.7 1.4 0.306 12.4 11.8 - - D111918 483.385 7.002.044 1.2 2.3 0.575 16.4 15.5 1 5 D111912 483.337 7.002.141 6.0 1.1 0.388 18.4 15.3 1 - D111912 483.337 7.002.240 7.9 1.4 0.449 4.7 29.3 - - D111924 483.397 7.002.306 0.2 1.0 0.0428 22.4 2.2 2 2 D111924 483.397 7.002.306 0.2 1.0 0.044 28.3 23.1 - - D111924 483.396 7.002.400 7.2 0.9 0.500 2.2 D111924 483.396 7.002.400 0.4 1.0 0.080 2.2 D111924 483.396 7.002.400 1.4 0.7 0.4 0.1 0.01 0.1 0.1 0.1 0.1 0.1	D111516	483,326	7,801,947	5.9	1.6	0.497	12.0	11.7	2	2
D111918 483.33 7.002.0H1 12.1 2.3 0.572 179 183 .4 D111919 483.335 7.802.1H1 6.0 1.1 0.388 16.4 15.3 1 - D11192 483.355 7.802.1H2 7.6 1.2 0.438 57.3 30.9 1 2 D11192 483.357 7.802.240 7.0 1.4 0.449 4.7 20.3 - - D11192 483.357 7.802.285 8.2 1.0 0.604 28.3 26.9 1 5 D111924 483.347 7.802.382 7.4 0.7 0.469 28.1 22.4 2 3 D111924 483.347 7.802.582 7.6 0.6 0.514 22.6 3.1 - - 3 D111924 483.347 7.802.589 7.6 0.6 0.514 22.6 2.3 3 3 D111532 483.347 7.802.579 7.6	D111517	483,334	7,801,991	4.7	1.4	0.398	12.4	11.8	-	-
DT11519 483.35 7.002.064 10.4 10.8 0.512 17.9 19.3 - 4 DT11520 483.357 7.002.162 7.6 1.2 0.435 37.3 30.9 1 2 DT11521 483.347 7.002.260 7.3 1.6 0.428 2.84 2.62 2 2 DT11524 483.357 7.002.380 8.2 1.0 0.604 2.83 2.09 1.5 0.114 2.64.84 2.62 2 2 3 DT11524 483.357 7.002.380 8.2 1.0 0.644 2.84 2.62 2 2 3 DT11524 483.336 7.002.490 7.4 0.8 0.550 2.68 1.97 -3 <	D111518	483,335	7,802,041	12.1	2.3	0.575	16.4	15.5	1	5
D111820 449.335 7.802.141 0.0 1.1 0.388 18.4 15.3 1 - D111821 483.337 7.802.240 7.9 1.4 0.445 37.3 3.0.0 1 2 D111824 483.337 7.802.240 7.3 1.5 0.428 28.4 25.2 2 2 D111824 483.337 7.802.238 8.2 1.0 0.0084 28.3 28.9 1 5 D111824 483.357 7.802.240 7.4 0.7 0.449 28.1 - - D111824 483.358 7.802.240 7.2 0.9 0.580 22.6 1.0 - 3 D111824 483.380 7.802.600 7.2 0.9 0.580 22.6 1.0 3 3 3 1 115.5 483.347 7.802.602 - 2.5 3 3 1 115.5 483.347 7.802.637 6.5 1.0 0.4212 2.1	D111519	483,333	7,802,084	10.4	1.8	0.512	17.9	19.3	-	4
D111521 449.347 7.802.102 7.6 1.2 0.445 97.3 30.9 1 2 D111523 483.347 7.802.285 7.3 1.5 0.4428 28.4 25.2 2 2 D111524 483.357 7.802.285 7.3 1.5 0.428 28.4 25.2 2 2 D111525 483.347 7.802.287 7.4 0.7 0.465 2.8 1.97 - 3 D111525 483.356 7.802.497 7.4 0.8 0.514 2.28 1.97 - 3 D111525 483.367 7.802.490 7.2 0.9 0.560 2.20 - 3 D111532 483.348 7.802.693 6.4 1.5 0.541 2.25 3 3 D111533 483.349 7.802.893 6.4 1.4 0.455 2.57 1 4 D111534 483.349 7.802.894 6.8 1.8 0.441 2.1	D111520	483,335	7,802,141	6.0	1.1	0.388	18.4	15.3	1	-
D1111822 4483.347 7.802.240 7.9 1.4 0.449 44.7 29.3 . . D1111824 483.337 7.802.386 6.2 1.0 0.404 28.3 2.0 1 5 D111525 483.337 7.802.386 6.2 1.0 0.604 28.3 2.80 1 5 D111527 483.336 7.802.490 7.2 0.9 0.580 2.26 10.7 - 3 D111527 483.306 7.802.490 7.2 0.8 0.514 22.6 2.2 2 1111531 483.347 7.802.892 7.6 1.5 0.514 22.6 - 2 2 1111531 483.347 7.802.892 7.6 1.5 0.514 22.6 - 2 2 1 1.4 0.449 27.1 2.5 3 3 1 1.4 0.439 7.802.492 6.5 1.8 0.449 27.1 3.10 2 2 1.4 0	D111521	483,337	7,802,192	7.6	1.2	0.435	37.3	30.9	1	2
D111523 4493.357 7,802,293 7.3 1.5 0.428 28.4 25.2 2 2 D111524 483.347 7,802,392 7.4 0.7 0.495 25.1 22.4 2 3 D111527 483.356 7,802,492 7.2 0.9 0.590 22.6 19.7 - 3 D111529 483.390 7,802,490 6.7 2.4 0.590 21.0 10.5 2 2 D1111524 483.390 7,802,693 6.4 1.5 0.514 22.6 2.5 3 3 D111534 483.390 7,802,693 6.4 1.5 0.541 20.5 - 2 0.5 2.5 3 3 1 111534 483.394 7,802,692 6.6 1.8 0.439 2.35 2.7 4 1 1 1 1 1 1 1 1 1 3 1 3 2.7 2.4 2 6	D111522	483,347	7,802,240	7.9	1.4	0.449	44.7	29.3	-	-
D111524 493.347 7.002.338 8.2 1.0 0.604 28.3 28.9 1 5 D111527 493.347 7.002.392 7.4 0.7 0.485 22.1 2.1 . . D111527 493.335 7.002.497 7.4 0.8 0.514 22.8 101 . . D111529 493.330 7.002.592 7.6 1.5 0.514 22.0 2.2 .	D111523	483,335	7,802,295	7.3	1.5	0.428	28.4	25.2	2	2
D111525 483.347 7.602.392 7.4 0.7 0.445 25.1 22.4 2 3 D111527 483.336 7.602.490 7.2 0.3 0.580 22.6 10.7 - 3 D111524 483.330 7.602.590 6.7 2.4 0.598 21.0 19.5 2 2 - 3 D111524 483.290 7.602.590 7.6 1.5 0.511 22.6 - 3 D111534 483.340 7.602.698 7.2 0.8 0.527 21.5 20.5 - 2 D111534 483.340 7.602.783 6.6 1.8 0.449 27.1 31.0 2 3 3 111535 483.340 7.602.892 6.9 1.3 0.449 27.1 31.0 2 3 3 111536 483.340 7.602.892 6.8 1.4 0.466 2.4 2 6 111154 483.340 7.602.84 6.6 1.4	D111524	483,337	7,802,336	8.2	1.0	0.604	28.3	26.9	1	5
D111527 493.335 7.022.497 7.4 0.8 0.514 22.8 22.1 - - D111528 493.336 7.802.490 7.2 0.9 0.880 22.6 19.7 - 3 D111528 493.337 7.802.892 7.6 1.5 0.514 22.6 22.0 - 3 D111523 493.348 7.802.898 7.2 0.8 0.527 21.5 20.5 - 2 D111533 493.344 7.802.898 6.5 0.9 0.337 30.1 25.7 1 4 D111534 493.344 7.802.787 6.5 1.8 0.438 23.5 27.2 - 3 D111536 493.341 7.802.892 6.6 1.4 0.469 20.7 2.4 6 D111539 493.342 7.803.041 4.8 2.4 0.427 19.0 21.6 1 1 1 1 1 1 1 1 1 <td>D111525</td> <td>483,347</td> <td>7,802,392</td> <td>7.4</td> <td>0.7</td> <td>0.495</td> <td>25.1</td> <td>22.4</td> <td>2</td> <td>3</td>	D111525	483,347	7,802,392	7.4	0.7	0.495	25.1	22.4	2	3
D111528 443.338 7.802.540 7.2 0.9 0.580 22.6 19.7 . 3 D111529 483.330 7.802.540 6.7 2.4 0.508 21.0 19.5 2 2 . 3 D111532 483.348 7.802.593 8.4 1.3 0.501 26.7 23.5 3 3 D111534 483.348 7.802.693 8.6 1.8 0.481 21.6 18.7 - - D111534 483.344 7.802.793 6.6 1.8 0.481 21.6 18.7 - - 3 D111534 483.341 7.802.892 6.9 1.3 0.449 27.1 31.0 2 3 5 D111534 483.341 7.802.892 6.9 1.7 0.394 23.8 22.2 3 5 D111544 483.341 7.803.995 5.0 1.7 0.394 23.8 22.2 3 5 D11	D111527	483,335	7,802,437	7.4	0.8	0.514	25.8	23.1	-	-
D111529 443,330 7,802,540 6,7 2,4 0,588 21.0 19.5 2 2 D111521 483,349 7,802,592 7,6 1,5 0,514 22,6 22,0 - 3 D111532 483,349 7,802,698 7,2 0,8 0,527 21,5 20,5 - 2 D111534 483,339 7,802,701 6,6 1,8 0,438 23,5 27,2 - 3 D111534 483,340 7,802,802 6,9 1,3 0,448 23,4 20,9 - 4 D111534 483,340 7,802,802 6,9 1,3 0,449 27,1 31,0 2 3 D111543 483,340 7,802,804 5,8 1,8 0,409 20,7 22,4 2 6 D111543 483,327 7,803,039 5,0 1,7 0,344 24,2 24,1 1 1 1 1 1 1 1 1 </td <td>D111528</td> <td>483,336</td> <td>7,802,490</td> <td>7.2</td> <td>0.9</td> <td>0.580</td> <td>22.6</td> <td>19.7</td> <td>-</td> <td>3</td>	D111528	483,336	7,802,490	7.2	0.9	0.580	22.6	19.7	-	3
D111531 443.329 7,802.892 7.6 1.5 0.514 22.6 22.0 . 3 D111532 483.348 7,802.889 7.2 0.8 0.527 21.5 20.5 . 2 D111534 483.334 7,802.281 7.6 0.8 0.527 21.5 20.5 . 2 D111535 483.340 7,802.281 6.5 0.8 0.433 22.5 2.7.2 . .3 D111536 483.340 7,802.282 6.6 1.4 0.445 22.4 2.0 . .4 D111534 483.340 7,802.282 6.6 1.4 0.465 2.3.4 2.0.0 . .4 D111541 483.343 7,803.101 4.8 2.4 0.427 1.9.0 2.1.6 1 1 D111544 483.331 7,803.276 6.6 2.1 0.505 2.4.5 2.8.1 2 7 D111544 483.331 7,803.276	D111529	483,330	7,802,540	6.7	2.4	0.508	21.0	19.5	2	2
D111532 483.344 7,802.859 8.4 1.3 0.501 26.7 23.5 3 3 D111534 483.334 7,802.858 7.2 0.8 0.527 21.5 20.5 . 2 D111534 483.340 7,802.731 6.5 0.9 0.387 30.1 25.7 1 4 D111536 483.341 7,802.837 6.5 1.8 0.448 21.1 31.0 2 3 D111536 483.341 7,802.882 6.6 1.4 0.449 27.1 31.0 2 3 D111540 483.347 7,803.036 5.0 1.7 0.394 22.8 2.2 3 5 D111542 483.337 7,803.276 5.6 2.2 0.481 2.4.2 2.4.1 - 4 D111544 483.347 7,803.276 5.6 2.2 0.481 2.4.2 2.4.1 - 4 D111544 483.741 7,803.276 <td< td=""><td>D111531</td><td>483,329</td><td>7,802,592</td><td>7.6</td><td>1.5</td><td>0.514</td><td>22.6</td><td>22.0</td><td>-</td><td>3</td></td<>	D111531	483,329	7,802,592	7.6	1.5	0.514	22.6	22.0	-	3
D111533 483.334 7.802.783 6.6 1.8 0.827 21.5 20.5 . 2 D111534 483.349 7.802.781 6.6 0.9 0.387 30.1 25.7 1 4 D111536 483.348 7.802.882 6.9 1.3 0.448 22.5 2.7 . 3 D111537 483.341 7.802.882 6.9 1.3 0.449 22.1 31.0 2 3 D111539 483.346 7.802.885 5.8 1.8 0.409 20.7 2.2.4 2 6 D111540 483.322 7.803.303 5.0 1.7 0.394 2.8 2.2.2 3 5 D111541 483.331 7.803.276 5.6 2.2 0.481 24.2 24.1 - 4 D111544 483.331 7.803.276 5.6 2.2 0.481 24.2 24.1 - 4 D111544 483.731 7.803.276 5.	D111532	483,348	7,802,639	8.4	1.3	0.501	26.7	23.5	3	3
D111534 483,330 7,802,783 6.6 1.8 0.481 21.6 18.7 - D111535 483,340 7,802,791 6.5 0.9 0.367 30.1 2.57 1 4 D111536 483,334 7,802,897 6.5 1.8 0.438 2.35 27.2 - 3 D111537 483,340 7,802,985 6.8 1.4 0.446 2.34 2.09 - 4 D111540 483,362 7,802,985 5.8 1.8 0.409 20.4 24.7 2 4 D111540 483,347 7,803,194 5.0 2.8 0.409 20.4 24.7 2 4 D111544 483,351 7,803,276 5.6 2.2 0.481 24.6 20.9 - 3 D111544 483,331 7,803,276 5.6 2.2 0.481 24.6 20.9 - 3 D111544 483,331 7,803,276 5.6	D111533	483,334	7,802,688	7.2	0.8	0.527	21.5	20.5	-	2
D111535 483.340 7.802.791 6.5 0.9 0.387 30.1 25.7 1 4 D111537 483.341 7.802.892 6.5 1.8 0.438 23.5 27.2 - 3 D111537 483.340 7.802.892 6.6 1.4 0.465 23.4 20.9 - 4 D111540 483.324 7.802.892 6.6 1.4 0.465 23.4 20.9 - 4 D111540 483.324 7.803.039 5.0 1.7 0.394 23.8 22.2 3 5 D111541 483.331 7.803.296 6.6 2.1 0.005 24.5 28.1 2 7 D111544 483.351 7.803.276 5.6 2.2 0.481 24.2 24.1 - 4 D111547 483.351 7.803.276 5.6 2.2 0.483 24.8 29.9 - 3 D111544 483.371 7.803.276 5.	D111534	483,339	7,802,753	6.6	1.8	0.481	21.6	18.7	-	-
D111536 483,348 7,802,837 6.5 1.8 0.438 23.5 27.2 . 3 D111537 483,341 7,802,982 6.9 1.3 0.449 27.1 31.0 2 3 D111538 483,340 7,802,942 6.6 1.4 0.465 23.4 20.9 - 4 D111541 483,342 7,802,942 6.6 1.7 0.384 23.8 22.2 3 5 D111541 483,337 7,803,134 5.0 2.8 0.409 20.4 24.7 2 4 D111541 483,337 7,803,276 5.6 2.2 0.481 24.2 24.1 - 4 D111544 483,341 7,803,276 5.6 2.2 0.443 24.8 20.9 - 3 D111544 483,347 7,803,340 6.4 2.2 0.443 24.8 29.9 - - D111544 483,738 7,803,294 5.	D111535	483,340	7,802,791	6.5	0.9	0.387	30.1	25.7	1	4
D111537 483.341 7.802.892 6.9 1.3 0.449 27.1 31.0 2 3 D111538 483.366 7.802.895 5.8 1.8 0.409 20.7 22.4 2 6 D111540 483.322 7.803.039 5.0 1.7 0.394 23.8 22.2 3 5 D111541 483.337 7.803.101 4.8 2.4 0.427 19.0 21.6 1 1 D111542 483.331 7.803.286 6.6 2.1 0.505 24.5 28.1 2 7 D111545 483.346 7.803.3276 5.6 2.2 0.483 24.8 29.9 - 3 D111547 483.341 7.803.315 5.0 2.3 0.442 24.2 24.1 - 4 D111547 483.741 7.803.315 5.0 2.3 0.446 21.1 17.3 1 6 D111554 483.736 7.803.299 6	D111536	483,338	7,802,837	6.5	1.8	0.438	23.5	27.2	-	3
D111538 483,340 7,802,942 6.6 1.4 0.465 23.4 20.9 - 4 D111549 483,322 7,803,039 5.0 1.7 0.334 22.8 22.2 3 5 D111541 483,323 7,803,101 4.8 2.4 0.427 19.0 21.6 1 1 D111542 483,331 7,803,286 6.6 2.1 0.505 24.5 28.1 2 7 D111543 483,341 7,803,276 5.6 2.2 0.481 24.2 24.1 - 4 D111544 483,344 7,803,331 5.0 2.3 0.446 21.1 1.7.3 1 6 D111544 483,334 7,803,294 5.7 1.4 0.424 26.9 21.1 2 4 D111543 483,738 7,803,294 5.7 1.4 0.424 26.9 2.1 2 2 D111555 483,786 7,803,296 6.	D111537	483,341	7,802,892	6.9	1.3	0.449	27.1	31.0	2	3
D111539 483,366 7,802,885 5.8 1.8 0.409 20.7 22.4 2 6 D111540 483,322 7,803,039 5.0 1.7 0.394 23.8 22.2 3 5 D111541 483,343 7,803,134 5.0 2.8 0.409 20.4 24.7 2 4 D111544 483,331 7,803,228 6.6 2.1 0.505 24.5 28.1 2 7 D111546 483,341 7,803,276 5.6 2.2 0.481 24.2 24.1 - 4 D111547 483,341 7,803,340 6.4 2.2 0.481 24.8 29.9 - 3 D111549 483,343 7,803,181 4.3 2.8 0.393 26.4 36.5 2 4 D111549 483,786 7,803,186 6.0 1.6 0.247 24.8 27.8 1 2 D111554 483,762 7,803,082 6.	D111538	483,340	7,802,942	6.6	1.4	0.465	23.4	20.9	-	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111539	483,366	7,802,985	5.8	1.8	0.409	20.7	22.4	2	6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111540	483,322	7,803,039	5.0	1.7	0.394	23.8	22.2	3	5
D111542 483,337 7,803,134 5.0 2.8 0.409 20.4 24.7 2 4 D111544 483,331 7,803,228 6.6 2.1 0.505 24.5 28.1 2 7 D111546 483,340 7,803,226 6.6 2.2 0.481 24.2 24.1 - 4 D111546 483,340 7,803,340 6.4 2.2 0.443 24.8 29.9 - 3 D111546 483,738 7,803,114 4.3 2.8 0.393 26.4 36.5 2 4 D111549 483,738 7,803,129 6.4 1.2 0.347 24.8 27.8 1 2 D111551 483,736 7,803,128 6.0 1.6 0.343 23.5 27.6 2 2 D111554 483,736 7,803,039 6.5 - 0.345 25.9 27.6 2 2 D111555 483,742 7,802,946 6.3<	D111541	483,343	7,803,101	4.8	2.4	0.427	19.0	21.6	1	1
D111544 483,331 7,803,228 6.6 2.1 0.505 24.5 28.1 2 7 D111545 483,351 7,803,276 5.6 2.2 0.481 24.2 24.1 - 4 D111547 483,741 7,803,340 6.4 2.2 0.483 24.8 29.9 - 3 D111547 483,741 7,803,311 4.3 2.8 0.393 26.4 36.5 2 4 D111549 483,738 7,803,229 6.4 1.2 0.347 24.8 27.8 1 2 - D111554 483,736 7,803,128 6.0 1.6 0.343 23.5 26.6 2 4 D111554 483,744 7,803,039 6.5 - 0.345 25.9 27.6 2 2 D111555 483,744 7,803,039 6.5 - 0.345 25.1 26.7 2 2 D111556 483,744 7,802,946	D111542	483,337	7,803,134	5.0	2.8	0.409	20.4	24.7	2	4
D111545 483,351 7,803,276 5.6 2.2 0.481 24.2 24.1 - 4 D111546 483,348 7,803,340 6.4 2.2 0.483 24.8 29.9 - 3 D111547 483,741 7,803,311 5.0 2.3 0.446 21.1 17.3 1 6 D111548 483,331 7,803,181 4.3 2.8 0.393 26.4 36.5 2 4 D111544 483,738 7,803,229 6.4 1.2 0.347 24.8 27.8 1 2 D111552 483,763 7,803,128 6.0 1.6 0.343 23.5 27.6 2 2 D111554 483,762 7,802,984 7.3 - 0.362 25.3 27.6 2 2 D111556 483,742 7,802,984 6.3 - 0.362 25.3 24.6 - - D111556 483,738 7,802,983 7.4 <td>D111544</td> <td>483,331</td> <td>7,803,228</td> <td>6.6</td> <td>2.1</td> <td>0.505</td> <td>24.5</td> <td>28.1</td> <td>2</td> <td>7</td>	D111544	483,331	7,803,228	6.6	2.1	0.505	24.5	28.1	2	7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111545	483,351	7,803,276	5.6	2.2	0.481	24.2	24.1	-	4
D111547 483,741 7,803,331 5.0 2.3 0.446 21.1 17.3 1 6 D111548 483,331 7,803,181 4.3 2.8 0.393 26.4 36.5 2 4 D111549 483,738 7,803,229 6.4 1.2 0.347 26.9 21.1 2 4 D111552 483,763 7,803,229 6.4 1.2 0.347 22.0 25.9 2 - D111552 483,763 7,803,196 6.5 0.7 0.360 22.0 25.9 2 - D111554 483,752 7,803,082 6.0 0.9 0.399 23.5 27.4 - 3 D111556 483,744 7,802,984 7.3 - 0.355 26.2 35.3 - 4 D111557 483,752 7,802,984 6.3 - 0.355 25.1 26.7 2 - D111561 483,737 7,802,633 7.4 <td>D111546</td> <td>483,348</td> <td>7,803,340</td> <td>6.4</td> <td>2.2</td> <td>0.483</td> <td>24.8</td> <td>29.9</td> <td>-</td> <td>3</td>	D111546	483,348	7,803,340	6.4	2.2	0.483	24.8	29.9	-	3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111547	483,741	7,803,331	5.0	2.3	0.446	21.1	17.3	1	6
D111549 483,738 7,803,294 5.7 1.4 0.424 26.9 21.1 2 4 D111551 483,738 7,803,229 6.4 1.2 0.347 24.8 27.8 1 2 D111552 483,736 7,803,128 6.0 1.6 0.343 23.5 26.6 2 4 D111554 483,752 7,803,082 6.0 0.9 0.399 23.5 27.6 2 2 D111554 483,742 7,803,089 6.5 - 0.345 25.9 27.6 2 2 D111555 483,742 7,802,946 6.3 - 0.355 26.2 35.3 - 4 D111556 483,738 7,802,946 6.3 - 0.352 25.1 26.7 2 - D111556 483,738 7,802,833 7.4 1.2 0.386 22.8 28.7 3 3 D111561 483,737 7,802,735 7.8	D111548	483,331	7,803,181	4.3	2.8	0.393	26.4	36.5	2	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111549	483,738	7,803,294	5.7	1.4	0.424	26.9	21.1	2	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111551	483,738	7,803,229	6.4	1.2	0.347	24.8	27.8	1	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111552	483,763	7,803,196	6.5	0.7	0.360	22.0	25.9	2	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111553	483,736	7,803,128	6.0	1.6	0.343	23.5	26.6	2	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111554	483,752	7,803,082	6.0	0.9	0.399	23.5	27.4	-	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D111555	483,744	7,803,039	6.5	-	0.345	25.9	27.6	2	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111556	483,742	7,802,984	7.3	-	0.355	26.2	35.3	-	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111557	483,752	7,802,946	6.3	-	0.352	25.3	24.6	-	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111558	483,738	7,802,882	6.1	1.6	0.335	25.1	26.7	2	-
D111561 483,737 7,802,775 8.8 1.9 0.420 18.8 29.0 - 2 D111562 483,743 7,802,735 7.8 1.0 0.387 24.3 29.1 - 2 D111563 483,729 7,802,691 7.2 1.5 0.408 23.2 29.0 2 2 D111564 483,735 7,802,633 7.4 0.8 0.432 29.5 31.4 - 4 D111565 483,738 7,802,537 6.1 1.1 0.411 22.6 20.6 1 1 D111566 483,739 7,802,435 8.1 0.9 0.450 22.3 25.0 - 4 D111568 483,730 7,802,322 6.6 - 0.494 22.0 25.9 - 3 D111570 483,744 7,802,329 7.0 - 0.463 21.1 24.3 - 3 D111570 483,743 7,802,135 7.1 <td>D111559</td> <td>483,738</td> <td>7,802,833</td> <td>7.4</td> <td>1.2</td> <td>0.386</td> <td>22.8</td> <td>28.7</td> <td>3</td> <td>3</td>	D111559	483,738	7,802,833	7.4	1.2	0.386	22.8	28.7	3	3
D111562 483,743 7,802,735 7.8 1.0 0.387 24.3 29.1 - 2 D111563 483,729 7,802,691 7.2 1.5 0.408 23.2 29.0 2 2 D111564 483,735 7,802,633 7.4 0.8 0.432 29.5 31.4 - 4 D111564 483,738 7,802,537 6.1 1.1 0.411 22.6 20.6 1 1 D111566 483,739 7,802,489 8.5 0.8 0.435 24.9 29.6 - 6 D111568 483,730 7,802,489 8.5 0.8 0.435 24.9 29.6 - 6 D111568 483,730 7,802,489 8.1 0.9 0.450 22.3 25.0 - 4 D111569 483,744 7,802,382 6.6 - 0.494 22.0 25.9 - 3 D111570 483,732 7,802,329 7.0<	D111561	483,737	7,802,775	8.8	1.9	0.420	18.8	29.0	-	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D111562	483,743	7,802,735	7.8	1.0	0.387	24.3	29.1	-	2
D111564 483,735 7,802,633 7.4 0.8 0.432 29.5 31.4 - 4 D111565 483,738 7,802,586 6.6 0.8 0.407 21.5 25.2 - 7 D111566 483,734 7,802,587 6.1 1.1 0.411 22.6 20.6 1 1 D111567 483,739 7,802,489 8.5 0.8 0.435 24.9 29.6 - 6 D111568 483,730 7,802,489 8.5 0.8 0.435 24.9 29.6 - 6 D111568 483,730 7,802,435 8.1 0.9 0.450 22.3 25.0 - 4 D111569 483,744 7,802,382 6.6 - 0.494 22.0 25.9 - 3 D111570 483,743 7,802,329 7.0 - 0.463 21.1 24.3 - 3 D111571 483,732 7,802,183 7.0 <td>D111563</td> <td>483,729</td> <td>7,802,691</td> <td>7.2</td> <td>1.5</td> <td>0.408</td> <td>23.2</td> <td>29.0</td> <td>2</td> <td>2</td>	D111563	483,729	7,802,691	7.2	1.5	0.408	23.2	29.0	2	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D111564	483,735	7,802,633	7.4	0.8	0.432	29.5	31.4	-	4
D111566 483,734 7,802,537 6.1 1.1 0.411 22.6 20.6 1 1 D111567 483,739 7,802,489 8.5 0.8 0.435 24.9 29.6 - 6 D111568 483,730 7,802,435 8.1 0.9 0.450 22.3 25.0 - 4 D111569 483,744 7,802,382 6.6 - 0.494 22.0 25.9 - 3 D111570 483,743 7,802,329 7.0 - 0.463 21.1 24.3 - 3 D111571 483,690 7,802,242 7.8 1.2 0.452 20.9 21.9 - 2 D111572 483,732 7,802,183 7.0 1.0 0.458 19.5 20.1 2 2 D111572 483,736 7,802,035 7.1 0.8 0.459 19.9 17.7 - - D111574 483,717 7,802,025 7.4 <td>D111565</td> <td>483,738</td> <td>7,802,586</td> <td>6.6</td> <td>0.8</td> <td>0.407</td> <td>21.5</td> <td>25.2</td> <td>-</td> <td>7</td>	D111565	483,738	7,802,586	6.6	0.8	0.407	21.5	25.2	-	7
D111567 483,739 7,802,489 8.5 0.8 0.435 24.9 29.6 - 6 D111568 483,730 7,802,435 8.1 0.9 0.450 22.3 25.0 - 4 D111569 483,744 7,802,382 6.6 - 0.494 22.0 25.9 - 3 D111570 483,743 7,802,329 7.0 - 0.463 21.1 24.3 - 3 D111571 483,690 7,802,329 7.0 - 0.463 21.1 24.3 - 2 D111571 483,690 7,802,422 7.8 1.2 0.452 20.9 21.9 - 2 D111572 483,736 7,802,183 7.0 1.0 0.458 19.5 20.1 2 2 D111573 483,717 7,802,099 9.0 - 0.513 20.4 19.9 - 2 D111574 483,736 7,802,025 7.4	D111566	483,734	7,802,537	6.1	1.1	0.411	22.6	20.6	1	1
D111568 483,730 7,802,435 8.1 0.9 0.450 22.3 25.0 - 4 D111569 483,744 7,802,382 6.6 - 0.494 22.0 25.9 - 3 D111570 483,743 7,802,329 7.0 - 0.463 21.1 24.3 - 3 D111571 483,690 7,802,242 7.8 1.2 0.452 20.9 21.9 - 2 D111572 483,732 7,802,183 7.0 1.0 0.458 19.5 20.1 2 2 D111573 483,736 7,802,135 7.1 0.8 0.459 19.9 17.7 - - D111574 483,736 7,802,025 7.4 1.3 0.466 22.6 22.3 - - D111575 483,731 7,801,985 8.3 - 0.463 23.1 24.4 1 5 D111578 483,743 7,801,930 9.0 0.7 0.533 23.4 24.0 1 2	D111567	483,739	7,802,489	8.5	0.8	0.435	24.9	29.6	-	6
D111569 483,744 7,802,382 6.6 - 0.494 22.0 25.9 - 3 D111570 483,743 7,802,329 7.0 - 0.463 21.1 24.3 - 3 D111571 483,690 7,802,242 7.8 1.2 0.452 20.9 21.9 - 2 D111572 483,732 7,802,183 7.0 1.0 0.458 19.5 20.1 2 2 D111573 483,736 7,802,135 7.1 0.8 0.459 19.9 17.7 - - D111574 483,717 7,802,099 9.0 - 0.513 20.4 19.9 - 2 D111575 483,736 7,802,025 7.4 1.3 0.466 22.6 22.3 - D111577 483,731 7,801,985 8.3 - 0.463 23.1 24.4 1 5 D111578 483,743 7,801,930 9.0 0.7	D111568	483,730	7,802,435	8.1	0.9	0.450	22.3	25.0	-	4
D111570 483,743 7,802,329 7.0 - 0.463 21.1 24.3 - 3 D111571 483,690 7,802,242 7.8 1.2 0.452 20.9 21.9 - 2 D111572 483,732 7,802,183 7.0 1.0 0.458 19.5 20.1 2 2 D111573 483,736 7,802,135 7.1 0.8 0.459 19.9 17.7 - - D111574 483,717 7,802,099 9.0 - 0.513 20.4 19.9 - 2 D111574 483,736 7,802,025 7.4 1.3 0.466 22.6 22.3 - D111577 483,731 7,801,985 8.3 - 0.463 23.1 24.4 1 5 D111578 483,743 7,801,930 9.0 0.7 0.533 23.4 24.0 1 2	D111569	483,744	7,802,382	6.6	-	0.494	22.0	25.9	-	3
D111571 483,690 7,802,242 7.8 1.2 0.452 20.9 21.9 - 2 D111572 483,732 7,802,183 7.0 1.0 0.458 19.5 20.1 2 2 D111573 483,736 7,802,135 7.1 0.8 0.459 19.9 17.7 - - D111574 483,717 7,802,099 9.0 - 0.513 20.4 19.9 - 2 D111575 483,736 7,802,025 7.4 1.3 0.466 22.6 22.3 - - D111577 483,731 7,801,985 8.3 - 0.463 23.1 24.4 1 5 D111578 483,743 7,801,930 9.0 0.7 0.533 23.4 24.0 1 2	D111570	483,743	7,802,329	7.0	-	0.463	21.1	24.3	-	3
D111572 483,732 7,802,183 7.0 1.0 0.458 19.5 20.1 2 2 D111573 483,736 7,802,135 7.1 0.8 0.459 19.9 17.7 - - D111574 483,736 7,802,099 9.0 - 0.513 20.4 19.9 - 2 D111575 483,736 7,802,025 7.4 1.3 0.466 22.6 22.3 - - D111577 483,731 7,801,985 8.3 - 0.463 23.1 24.4 1 5 D111578 483,743 7,801,930 9.0 0.7 0.533 23.4 24.0 1 2	D111571	483,690	7,802,242	7.8	1.2	0.452	20.9	21.9	-	2
D111573 483,736 7,802,135 7.1 0.8 0.459 19.9 17.7 - - D111574 483,717 7,802,099 9.0 - 0.513 20.4 19.9 - 2 D111575 483,736 7,802,025 7.4 1.3 0.466 22.6 22.3 - - D111577 483,731 7,801,985 8.3 - 0.463 23.1 24.4 1 5 D111578 483,743 7,801,930 9.0 0.7 0.533 23.4 24.0 1 2	D111572	483,732	7,802,183	7.0	1.0	0.458	19.5	20.1	2	2
D111574 483,717 7,802,099 9.0 - 0.513 20.4 19.9 - 2 D111575 483,736 7,802,025 7.4 1.3 0.466 22.6 22.3 - - D111577 483,731 7,801,985 8.3 - 0.463 23.1 24.4 1 5 D111578 483,743 7,801,930 9.0 0.7 0.533 23.4 24.0 1 2	D111573	483,736	7,802,135	7.1	0.8	0.459	19.9	17.7	-	-
D111575 483,736 7,802,025 7.4 1.3 0.466 22.6 22.3 - - D111577 483,731 7,801,985 8.3 - 0.463 23.1 24.4 1 5 D111578 483,743 7,801,930 9.0 0.7 0.533 23.4 24.0 1 2	D111574	483,717	7,802,099	9.0	-	0.513	20.4	19.9	-	2
D111577 483,731 7,801,985 8.3 - 0.463 23.1 24.4 1 5 D111578 483,743 7,801,930 9.0 0.7 0.533 23.4 24.0 1 2	D111575	483.736	7,802.025	7.4	1.3	0.466	22.6	22.3	-	-
D111578 483,743 7,801,930 9.0 0.7 0.533 23.4 24.0 1 2	D111577	483,731	7,801,985	8.3	-	0.463	23.1	24.4	1	5
	D111578	483,743	7,801,930	9.0	0.7	0.533	23.4	24.0	1	2

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D111579	484,126	7,801,935	9.5	1.2	0.519	24.2	24.5	-	5
D111580	484,124	7,802,001	9.2	0.7	0.529	22.0	23.5	2	3
D111581	484,140	7,802,042	9.2	0.7	0.569	25.1	23.0	2	6
D111582	484,138	7,802,089	9.2	-	0.538	24.9	28.7	2	5
D111583	484,126	7,802,142	9.8	0.9	0.507	21.9	24.6	2	4
D111584	484,148	7,802,180	8.8	1.4	0.559	25.5	30.1	2	3
D111585	484,129	7,802,226	8.2	2.1	0.533	21.2	24.8	1	5
D111586	484,145	7,802,294	6.8	1.9	0.513	20.9	20.7	2	5
D111587	484,136	7,802,333	6.8	0.8	0.559	18.7	15.0	2	5
D111588	484,143	7,802,385	8.0	1.8	0.457	20.9	26.2	2	3
D111589	484,138	7,802,428	7.6	1.3	0.462	20.7	19.8	2	4
D111591	484,130	7,802,490	6.8	2.1	0.424	24.7	24.3	1	3
D111592	484,143	7,802,533	7.4	-	0.393	25.7	33.4	-	6
D111593	484,141	7,802,598	6.6	0.7	0.368	23.5	25.9	2	-
D111594	484,130	7,802,639	6.7	1.2	0.425	23.0	27.3	2	-
D111595	484,147	7,802,679	6.6	1.3	0.388	22.8	28.5	3	1
D111596	484,134	7,802,737	6.9	1.0	0.429	24.0	28.2	2	-
D111597	484,133	7,802,783	6.7	1.8	0.464	24.6	22.5	1	5
D111598	484,149	7,802,836	6.2	1.4	0.394	23.8	32.9	-	6
D111601	484,147	7,802,887	6.4	1.7	0.427	21.8	23.6	3	-
D111602	484,139	7,802,931	6.9	0.7	0.398	24.0	30.8	-	4
D111603	484,134	7,802,983	7.0	-	0.434	22.4	26.7	2	4
D111604	484,144	7,803,031	7.0	1.1	0.431	21.3	29.4	2	5
D111605	484,151	7,803,084	6.9	1.0	0.447	25.9	30.3	-	4
D111606	484,149	7,803,136	6.5	2.9	0.510	18.6	26.7	2	4
D111607	484,147	7,803,181	6.2	2.7	0.471	20.8	30.1	2	2
D111608	484,152	7,803,236	6.0	1.8	0.421	20.0	29.6	-	3
D111609	484,162	7,803,282	5.8	2.2	0.446	19.8	22.7	-	1
D111610	484,141	7,803,329	5.9	1.3	0.476	18.9	21.9	1	-
D111611	486,345	7,802,464	5.4	1.1	0.490	19.8	15.1	-	1
D111612	486,336	7,802,522	5.0	1.8	0.490	15.4	12.8	4	2
D111613	486,334	7,802,574	6.6	2.9	0.463	22.4	23.1	2	-
D111614	486,344	7,802,622	5.1	1.1	0.466	20.0	17.8	3	-
D111615	486,328	7,802,662	6.5	1.9	0.508	18.9	17.7	-	-
D111616	480,337	7,802,728	6.0	3.0	0.502	20.5	15.0	-	1
D111617	400,342	7,002,772	5.0	1.4	0.490	10.0	13.1	-	3
D111610	400,040	7,002,012	5.0	0.7	0.500	20.1	13.0	-	4
D111620	400,320	7,802,804	5.7	2.1	0.362	17.5	12.7	2	2
D111621	400,341	7,002,914	5.0	2.9	0.459	10.7	16.2	2	-
D111622	486 337	7,802,905	5.5	2.1	0.400	19.9	14.0	- 1	-
D111622	400,337	7,003,014	6.0	2.5	0.407	18.4	14.0	1	1
D111623	486 323	7,803,125	5.7	2.1	0.012	17.0	15.0	-	1
D111625	486 349	7,803 169	5.7	2.0	0 476	20.0	17.2	3	1
D111627	486.332	7 803 213	5.4	2.0	0.432	18.3	15.9	1	-
D111628	486 745	7 803 244	6.9	3.1	0.460	23.3	23.9	2	-
D111629	486 750	7 803 168	5.3	27	0.458	22.8	22.2	-	2
D111631	486 738	7 803 117	6.1	12	0.450	18.5	19.3	-	-
D111632	486.743	7,803,066	5.5	1.9	0.416	17.8	16.6	3	-
D111633	486,740	7.803.021	6.0	3.1	0.488	19.0	17.0	2	2
D111634	486.743	7,802.976	6.6	1.6	0.459	20.6	22.4	2	3
D111635	486.752	7,802,922	6.4	1.9	0.388	22.0	27.8	2	-
D111636	486.750	7,802.869	6.2	0.7	0.483	20.7	20.1	1	1
D111637	486.742	7.802.825	5.6	1,6	0.460	17.3	19.3	-	2
D111638	486,734	7,802,776	5.5	1.4	0.470	21.3	20.1	-	-
D111639	486.728	7,802.722	5.9	1.4	0.414	20.4	19.8	1	2
D111640	486.729	7,802.670	5.9	2.2	0.460	21.4	17.9	3	-
D111641	486.740	7,802.631	7.0	0.8	0.484	21.9	23.3	2	-
D111642	486,743	7,802,574	6.2	1.7	0.467	20.2	20.2	-	-
1	, -								

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D111643	486,749	7,802,512	6.3	3.0	0.435	22.0	22.2	3	-
D111644	486,742	7,802,470	6.5	1.2	0.448	21.3	19.8	1	1
D111645	486,731	7,802,424	6.5	1.7	0.394	21.5	22.5	2	-
D111646	486,751	7,802,371	6.6	0.6	0.402	19.9	20.2	2	1
D111647	486,743	7,802,319	6.3	1.5	0.438	21.1	18.8	1	3
D111648	486,743	7,802,266	6.9	2.0	0.398	21.7	24.4	2	2
D111649	486,748	7,802,223	6.1	0.5	0.377	19.8	21.4	-	1
D111650	486,742	7,802,170	7.6	1.5	0.374	22.2	23.3	2	-
D111652	486,750	7,802,115	9.4	0.7	0.510	18.9	21.0	1	-
D111653	486,742	7,802,071	9.1	0.9	0.398	22.9	21.5	2	3
D111654	486,739	7,802,021	8.5	1.5	0.502	31.1	26.4	-	1
D111655	486,753	7,801,970	7.9	0.8	0.436	22.9	17.2	1	3
D111656	486,751	7,801,911	8.9	1.6	0.509	24.1	21.9	3	2
D111657	486,742	7,801,874	7.9	1.5	0.515	21.7	15.1	2	-
D111658	486,734	7,801,834	10.0	2.0	0.530	25.6	20.5	3	-
D111659	486,724	7,801,774	8.0	1.1	0.506	22.6	20.0	1	2
D111661	486,743	7,801,725	8.6	1.6	0.567	26.3	22.1	2	-
D111662	486,743	7,801,669	8.4	-	0.515	22.4	18.9	1	5
D111663	486,742	7,801,623	9.4	2.3	0.542	25.8	26.9	1	1
D111664	486,757	7,801,581	7.5	1.5	0.493	27.4	21.4	-	2
D111665	486,742	7,801,523	9.1	1.7	0.585	22.5	21.1	3	1
D111666	486,743	7,801,463	8.5	1.4	0.558	18.1	16.4	2	4
D111667	486,730	7,801,422	7.5	1.4	0.546	18.3	13.5	1	2
D111668	486,759	7,801,375	7.9	1.1	0.616	19.5	17.2	1	1
D111669	486,736	7,801,324	9.3	1.9	0.545	23.2	19.8	-	4
D111670	486,750	7,801,277	9.5	0.7	0.561	21.4	20.0	2	-
D111671	486,760	7,801,224	8.4	2.1	0.558	24.8	20.6	3	-
D111672	486,739	7,801,168	9.6	2.9	0.588	17.8	19.2	-	-
D111673	486,750	7,801,133	10.7	1.1	0.710	27.9	25.7	-	1
D111674	486,349	7,801,159	10.3	1.2	0.509	21.8	20.1	2	3
D111675	486,344	7,801,225	10.4	2.3	0.619	22.4	15.7	-	2
D111677	486,363	7,801,268	9.9	1.3	0.513	23.5	20.5	2	-
D111678	486,338	7,801,309	10.0	0.6	0.588	22.9	20.6	1	3
D111679	486,330	7,801,372	10.0	1.3	0.681	27.4	20.2	3	-
D111680	486,339	7,801,428	9.3	0.8	0.627	22.6	20.2	-	4
D111681	486,338	7,801,470	12.3	1.8	0.832	61.8	39.6	2	2
D111682	486,334	7,801,516	6.9	0.5	0.627	23.5	19.7	-	2
D111683	486,346	7,801,575	7.4	1.3	0.489	22.5	21.9	-	5
D111684	486,337	7,801,615	8.3	1.2	0.655	24.9	19.6	2	4
D111685	486,342	7,801,663	8.8	0.6	0.630	23.8	19.1	-	4
D111686	486,345	7,801,719	7.4	0.9	0.611	23.4	20.8	-	2
D111687	486,335	7,801,772	7.8	1.1	0.558	24.2	18.1	-	3
D111688	486,332	7,801,814	7.3	2.4	0.576	22.9	15.3	2	4
D111689	486,339	7,801,858	7.5	0.6	0.542	23.3	16.5	-	2
D111691	486,336	7,801,918	6.8	1.1	0.494	22.2	14.4	2	4
D111692	486,324	7,801,969	7.4	1.2	0.548	22.2	16.3	2	5
D111693	486,350	7,802,014	8.7	0.9	0.630	25.9	18.0	2	5
D111694	486,341	7,802,066	8.1	1.0	0.551	22.1	16.5	3	1
D111695	486,338	7,802,112	9.5	3.2	0.483	28.3	18.8	2	4
D111696	486,343	7,802,166	8.7	1.0	0.557	22.2	19.7	-	6
D111697	486,336	7,802,216	9.2	4.9	0.566	27.1	18.8	2	2
D111698	486,341	7,802,274	9.7	1.2	0.573	23.7	19.0	2	4
D111699	486,339	7,802,318	9.7	1.5	0.533	25.2	20.7	-	4
D111701	486,332	7,802,377	8.9	-	0.490	24.2	24.4	2	4
D111702	486,337	7,802,417	7.4	2.7	0.448	19.8	16.0	-	4
D111703	487,136	7,802,163	6.9	0.7	0.454	16.7	17.1	-	3
D111704	487,132	7,802,222	6.4	1.0	0.469	23.1	25.9	-	2
D111705	487,147	7,802,271	6.4	0.8	0.427	19.7	17.9	1	5
D111706	487,137	7,802,320	6.3	1.5	0.446	21.3	22.4	-	4

D11107 447.38 7.00.285 5.9 0.7 0.386 174 16.2 2 2 D111706 447.139 7.00.2487 7.6 1.4 0.440 16.9 21.6 . . . D111716 447.139 7.00.2480 6.2 1.6 0.444 20.0 21.0 . 4 D11171 447.130 7.00.2480 6.0 2.0 0.301 18.4 17.2 1 3 D111712 447.130 7.00.2480 6.0 2.2 0.447 20.5 15.0 2 4 D111714 447.137 7.00.2472 5.9 . 0.445 21.7 17.1 . . 0.111717 447.48 7.00.2421 1.7 1.56 3 3 .	Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D111798 447.139 7.802.445 7.5 1.4 0.4416 21.0 22.6 3 3 D111798 447.130 7.802.518 6.0 - 0.328 20.0 21.9 - 4 D111711 447.135 7.802.649 6.7 2.0 0.331 118.4 17.2 1 3 D111713 447.138 7.802.663 6.0 2.2 0.437 2.5 16.0 2 2 4 D111713 447.137 7.802.619 5.7 2.0 0.435 2.2 1.61.3 2 2 2 1.61 1.6 3 3 3 1.11711 447.147 7.802.87 5 1.5 0.465 1.7 7.11.7 1.6 3 3 1.11711 447.137 7.802.807 6.7 1.2 0.462 1.7 7.7 1.6 3 3 1.1172 47.134 7.802.072 6.3 1.0 0.445 2.12 1.6 1 1	D111707	487,136	7,802,376	5.9	0.7	0.395	17.4	16.2	2	2
D111709 447.130 7.802.466 0.8.3 1.4 0.446 210 20.6 3 3 D111710 447.135 7.802.569 6.2 1.6 0.446 20.7 10.1 - 2 D111712 447.135 7.802.569 6.2 1.6 0.446 20.7 10.1 - 2 D111712 447.135 7.802.663 6.1 2.2 0.4467 20.5 15.0 2 4 D111714 447.147 7.802.870 5.8 - 0.4457 2.7 17.1 - - D111717 447.145 7.802.883 5.9 1.5 0.445 2.1 10.1 1.6 0.1177 1.6 3 0 1.1 1.5 0.11172 447.13 7.802.895 6.8 2.1 0.472 2.2 2.60 - 4 D111724 447.134 7.802.895 6.8 2.1 0.445 2.12 1.81 1.1 1.5	D111708	487,139	7,802,425	7.5	1.4	0.440	18.9	21.8	-	-
D111710 447130 7.802.618 0.0 - 0.328 20.0 21.9 - 4 D111711 447135 7.802.619 5.7 2.0 0.391 10.4 17.2 1 3 D111714 447135 7.802.619 6.0 2.2 0.457 20.5 15.0 2 4 D111714 447149 7.802.719 6.8 1.2 0.4455 22.3 16.3 2 2 D111715 4671.37 7.802.801 5.7 1.2 0.455 22.3 16.8 2 2 0.4171 - - - - 1.11714 4471.15 7.802.801 5.7 1.2 0.322 2.5 1.6 - - - - - - 1.11719 4471.35 7.802.801 5.8 1.1 0.497 22.2 2.50 - 4 1.1171714 4471.35 7.802.915 5.8 1.4 0.4172 4.8 1.11714 471.31	D111709	487,139	7,802,466	6.3	1.4	0.416	21.0	20.6	3	3
D111111 447:135 7.802.8619 5.7 2.0 0.931 14.4 17.2 1 3 D111172 447:149 7.802.873 6.0 2.2 0.487 2.25 15.0 2 4 D111714 447:149 7.802.870 6.9 1.2 0.485 2.23 15.3 2 2 D111716 447:145 7.802.877 6.9 - 0.405 2.17 17.1 - - D111716 447:137 7.802.883 5.8 1.5 0.459 17.5 1.53 - 4 D111712 447:132 7.802.020 6.7 1.2 0.382 2.25 1.60 - - D111722 447:131 7.802.072 6.3 1.0 0.446 2.12 1.87 1 1 D111722 447:131 7.802.073 6.3 2.3 0.402 1.83 17.2 1 - D111722 447:131 7.802.173 6.3	D111710	487,130	7,802,518	6.0	-	0.328	20.0	21.9	-	4
D111712 447.159 7.002.049 5.7 2.0 0.381 16.4 17.2 1 3 D111713 447.150 7.002.0483 6.0 2.2 0.467 22.3 18.3 2 2 4 D111714 447.149 7.802.710 6.9 1.2 0.465 22.3 18.3 2 2 D111714 447.137 7.802.812 6.1 1.7 0.460 17.7 16.0 3 3 D111719 447.135 7.802.802 5.7 1.2 0.822 25.5 1.89 - - D111719 447.135 7.802.072 6.3 1.0 0.445 21.2 1.87 1 5 D111722 447.134 7.803.072 6.3 1.0 0.447 2.32 2.60 - 4 D111722 447.134 7.803.073 6.2 1.0 0.437 1.8 1 1 1 1 1 1 1 1	D111711	487,135	7,802,569	6.2	1.6	0.446	20.7	19.1	-	2
D111713 447.140 7.802.063 0.0 2.2 0.447 20.5 15.0 2 4 D111714 487.145 7.802.710 5.0 - 0.445 22.3 18.3 2 2 D111714 487.145 7.802.812 6.1 1.7 0.446 21.7 17.1 - - D111717 487.145 7.802.810 5.7 1.2 0.382 23.5 1.8.9 - 4 D111710 487.134 7.802.820 5.7 1.2 0.382 23.5 1.8.9 - 4 D111720 487.134 7.803.012 6.3 2.1 0.445 21.2 1.8.7 1 5 D111721 487.134 7.803.015 6.2 2.0 0.523 1.0.1 1.4.1 1 1 1 1 1 1 1 1 1 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 <	D111712	487,139	7,802,619	5.7	2.0	0.391	18.4	17.2	1	3
D111714 487.48 7.802.710 6.0 1.2 0.485 22.3 10.3 2 2 D111715 487.48 7.802.812 6.1 1.7 0.445 21.7 1.7.1 - - D111716 487.187 7.802.812 6.1 1.7 0.446 17.5 13.9 - 4 D111717 487.182 7.802.802 5.7 1.2 0.382 22.8 18.9 - - D111717 487.130 7.802.807 6.1 1.4 0.490 18.1 14.5 2 5 D111721 487.131 7.803.072 6.3 1.0 0.447 21.2 10.7 1.6 D111722 487.131 7.803.073 6.2 1.0 0.431 18.3 17.4 - 1 D111722 487.542 7.803.370 6.0 1.0 0.431 18.3 17.2 1 - D111724 487.542 7.803.70 6.0	D111713	487,136	7,802,663	6.0	2.2	0.467	20.5	15.0	2	4
D111716 487.148 7.802.270 6.0 - 0.465 21.7 17.1 - D111716 487.137 7.802.883 5.9 1.5 0.460 17.7 16.6 3 3 D111717 487.148 7.802.883 5.9 1.2 0.382 23.5 118.9 - - D111710 487.144 7.802.890 5.1 1.4 0.4049 21.2 1.6.7 1 5 D111720 487.134 7.803.015 6.2 2.0 0.533 20.2 1.6.1 1 1 D111722 487.134 7.803.175 6.2 2.0 0.533 20.2 1.6.1 1	D111714	487,149	7,802,719	6.9	1.2	0.485	22.3	18.3	2	2
D111717 487,148 7,802,828 6.1 1.7 0.450 17.5 13.9 - 4 D11171 487,135 7,802,820 6.1 1.2 0.382 2.2.5 18.9 - - D111710 487,132 7,802,620 6.1 1.4 0.400 18.1 14.5 2 5 D111720 487,134 7,803,015 6.8 2.1 0.472 2.32 2.2.0 - 4 D111721 487,131 7,803,015 6.2 1.0 0.457 2.2.5 1.4 - 1 D111722 487,131 7,803,214 7.1 2.3 0.450 16.0 16.3 2 5 D111727 487,540 7,803,214 7.1 2.3 0.450 16.4 2 3 11.4 2 3 1.4 2 4 1 111172 487,542 7.803,64 5.5 2.3 0.451 2.3 15.1 2 4 1 </td <td>D111715</td> <td>487,145</td> <td>7,802,770</td> <td>5.9</td> <td>-</td> <td>0.405</td> <td>21.7</td> <td>17.1</td> <td>-</td> <td>-</td>	D111715	487,145	7,802,770	5.9	-	0.405	21.7	17.1	-	-
D111717 447,48 7,802,89 5.9 1.5 0,450 17.5 13.9 - 4 D111716 487,132 7,802,807 6.1 1.4 0,409 18.1 14.5 2 5 D111716 487,132 7,803,015 6.8 2.1 0,472 23.2 25.0 - 4 D111721 487,132 7,803,015 6.2 2.0 0,523 20.2 16.1 1 1 5 D111722 487,133 7,803,135 6.2 2.0 0,523 20.2 16.1 1 1 D111724 487,132 7,803,214 7.1 2.3 0,450 18.0 16.3 2 5 D111726 487,583 7,803,170 6.0 1.0 0,451 18.3 17.2 1 - D111729 487,583 7,803,044 5.4 2.3 0,510 21.7 18.6 - 4 D111734 487,553 7,803,044 <td>D111716</td> <td>487,137</td> <td>7,802,812</td> <td>6.1</td> <td>1.7</td> <td>0.450</td> <td>17.7</td> <td>16.6</td> <td>3</td> <td>3</td>	D111716	487,137	7,802,812	6.1	1.7	0.450	17.7	16.6	3	3
D111718 487,132 7,802,280 5.7 1.2 0.382 2.25 1.8 - D111710 487,132 7,802,287 6.1 1.4 0.409 18.1 14.5 2 5 D111721 487,134 7,803,072 6.3 1.0 0.445 21.2 1.8 1 1 D111722 487,138 7,803,173 6.2 1.0 0.457 22.8 17.4 1 1 D111723 487,138 7,803,173 6.2 1.0 0.457 22.8 17.4 1 1 D111724 487,543 7,803,170 6.0 1.0 0.451 16.3 1.4 2 3 D111728 487,542 7,803,044 5.5 1.4 0.424 17.6 19.8 2 4 D111733 487,552 7,803,044 5.5 2.3 0.442 2.3 1.4 2 3 D111733 487,552 7,802,848 5.6 - <td>D111717</td> <td>487,148</td> <td>7,802,883</td> <td>5.9</td> <td>1.5</td> <td>0.450</td> <td>17.5</td> <td>13.9</td> <td>-</td> <td>4</td>	D111717	487,148	7,802,883	5.9	1.5	0.450	17.5	13.9	-	4
D111719 487,132 7.802,967 6.1 1.4 0.409 18.1 14.5 2 5 D111720 487,134 7.803,015 6.8 2.1 0.472 23.2 25.0 - 4 D111721 487,131 7.803,115 6.2 2.0 0.523 20.2 16.1 1 1 D111724 487,132 7.803,214 7.1 2.3 0.450 18.0 16.3 2 5 D111727 487,544 7.803,170 6.0 1.0 0.451 16.3 17.2 1 - D111727 487,558 7.803,024 5.5 1.4 0.445 20.5 28.0 2 4 D111734 487,552 7.803,024 5.5 2.6 0.439 18.2 13.7 - 4 D111734 487,552 7.803,024 5.5 2.6 0.439 18.2 13.7 - 4 D111734 487,552 7.802,938 5.	D111718	487,135	7,802,920	5.7	1.2	0.382	23.5	18.9	-	-
D111720 487,134 7,803,015 6.8 2.1 0.472 2.8.2 2.50 - 4 D111721 487,132 7,803,175 6.2 2.0 0.523 0.22 16.1 1 1 D111723 487,138 7,803,173 6.2 1.0 0.457 2.28 17.4 - 1 D111724 487,132 7,803,173 6.2 1.0 0.457 2.28 17.4 - 1 D111724 487,132 7,803,170 6.0 1.0 0.431 18.3 17.2 1 - D111728 487,542 7,803,123 6.8 2.4 0.452 2.5 0.50 2 4 D111729 487,542 7,803,024 5.5 1.4 0.424 17.6 19.8 2 4 D111738 487,542 7,803,024 5.5 2.6 0.439 18.2 13.7 4 D111737 487,543 7,802,948 5.5	D111719	487,132	7,802,967	6.1	1.4	0.409	18.1	14.5	2	5
D111721 447,139 7,803,072 6.3 1.0 0.445 21.2 18.7 1 6 D111722 487,131 7,803,115 6.2 2.0 0.523 20.2 16.1 1 1 D111724 487,132 7,803,117 6.2 1.0 0.457 2.2.8 17.4 - 1 D111725 487,503 7,803,214 7.1 2.3 0.450 18.0 16.3 2 5 D111727 487,503 7,803,214 5.6 2.5 0.518 10.0 14.4 2 3 D111727 487,558 7,803,044 5.5 1.4 0.424 17.6 19.8 2 4 D111732 487,534 7,802,948 5.3 2.3 0.482 2.3 18.1 2 3 D111734 487,535 7,802,979 6.3 1.7 0.504 2.02 13.4 1 - - D111734 487,535 7,802,972 6.	D111720	487,134	7,803,015	6.8	2.1	0.472	23.2	25.0	-	4
D111722 487,131 7.803,173 6.2 2.0 0.523 20.2 16.1 1 1 D111723 487,138 7.803,173 6.2 1.0 0.457 22.8 17.4 . 1 D111725 487,540 7.803,215 5.6 2.5 0.518 19.0 14.4 2 3 D111727 487,558 7.803,170 6.0 1.0 0.431 18.3 17.2 1 - D111729 487,558 7.803,024 5.4 2.3 0.510 2.1.7 1.8.6 - 4 D111731 487,552 7.802,026 5.3 2.3 0.482 2.3.3 18.1 2 3 D111732 487,553 7.802,678 5.6 - 0.504 2.0.2 13.4 1 - D111736 487,553 7.802,779 6.3 1.7 0.502 21.6 1.4.7 3 D111779 487,555 7.802,779 6.3 <	D111721	487,129	7,803,072	6.3	1.0	0.445	21.2	18.7	1	5
D111723 447,138 7,803,214 7,1 2.3 0.457 22.8 17.4 . 1 D111725 447,540 7,803,215 5.6 2.5 0.518 19.0 14.4 2 3 D111727 447,538 7,803,110 6.0 1.0 0.431 18.3 17.2 1 - D111728 487,542 7,803,042 5.4 2.4 0.455 2.6.0 2 4 D111729 487,554 7,803,044 5.5 1.4 0.424 17.6 18.8 2 4 D111732 487,534 7,802,286 5.3 2.3 0.482 2.33 18.1 2 3 D111734 487,535 7,802,278 6.3 1.7 0.502 21.6 14.7 1 3 D111736 487,535 7,802,779 6.3 1.7 0.502 21.6 14.7 1 3 D111736 487,535 7,802,672 6.6 0.	D111722	487,131	7,803,115	6.2	2.0	0.523	20.2	16.1	1	1
D111724 447,12 7,803,214 7,1 2.3 0.450 18.0 16.3 2 5 D111725 487,540 7,803,215 5.6 2.5 0.518 18.0 14.4 2 3 D111727 487,558 7,803,102 6.0 1.0 0.431 18.3 17.2 1 - D111729 487,552 7,803,004 5.5 1.4 0.424 17.6 19.8 2 4 D111732 487,552 7,803,004 5.5 1.4 0.424 17.6 19.8 2 4 D111732 487,552 7,802,808 5.5 2.6 0.439 18.2 13.7 - 4 D111734 447,537 7,802,208 5.5 2.6 0.439 18.2 13.4 1 - - D111736 447,537 7,802,208 7.1 0.475 2.5.6 15.4 2 2 D D11737 447,537 7,802,208 7.1 1.4	D111723	487,138	7,803,173	6.2	1.0	0.457	22.8	17.4	-	1
D111725 447,540 7,802,215 6.6 2.5 0.518 19.0 14.4 2 3 D111727 447,553 7,803,120 6.0 1.0 0.431 18.3 17.2 1 - D111728 447,552 7,803,123 6.8 2.4 0.455 20.5 22.0 2 4 D111729 447,558 7,803,024 5.4 2.3 0.510 21.7 18.6 - 4 D111733 447,532 7,802,986 5.5 2.6 0.439 18.2 13.7 - 4 D111734 487,535 7,802,888 5.6 - 0.564 20.2 13.4 1 - D111734 487,557 7,802,779 6.3 1.7 0.502 21.6 14.7 1 3 D111734 487,555 7,802,672 6.6 0.6 0.470 21.3 16.1 1 2 D111744 481,130 7,786,60 7.1 </td <td>D111724</td> <td>487,132</td> <td>7,803,214</td> <td>7.1</td> <td>2.3</td> <td>0.450</td> <td>18.0</td> <td>16.3</td> <td>2</td> <td>5</td>	D111724	487,132	7,803,214	7.1	2.3	0.450	18.0	16.3	2	5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111725	487,540	7,803,215	5.6	2.5	0.518	19.0	14.4	2	3
D111728 447,542 7,803,123 6.8 2.4 0.455 20.5 26.0 2 4 D111721 447,558 7,803,064 5.5 1.4 0.424 17.6 19.8 2 4 D111721 487,553 7,803,024 5.5 2.3 0.482 23.3 18.1 2 3 D111734 487,533 7,802,988 5.5 2.6 0.439 18.2 13.7 - 4 D111734 487,537 7,802,818 7.1 0.9 0.475 23.6 15.4 2 2 D111735 487,557 7,802,779 6.3 1.7 0.502 21.6 14.7 1 3 D111738 487,552 7,802,672 6.6 0.6 0.470 21.3 16.1 1 2 2 11174 487,530 7.02,672 6.6 0.6 0.470 21.3 16.1 1 2 1 11174 487,530 7.02,677 1	D111727	487,538	7,803,170	6.0	1.0	0.431	18.3	17.2	1	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111728	487,542	7,803,123	6.8	2.4	0.455	20.5	26.0	2	4
D111731 487,552 7,803,024 5.4 2.3 0.510 21.7 18.6 - 4 D111732 487,532 7,802,968 5.3 2.3 0.482 23.3 18.1 2 3 D111734 487,532 7,802,968 5.6 - 0.504 20.2 13.4 1 - D111734 487,553 7,802,779 6.3 1.7 0.502 21.6 14.7 1 3 D111736 487,557 7,802,779 6.3 2.2 0.464 21.1 17.9 - - D111738 487,555 7,802,672 6.6 0.6 0.470 21.3 16.1 1 2 5 D111740 487,505 7,802,606 9.3 0.6 0.600 20.1 27.3 2 4 D111742 481,130 7,796,118 7.5 1.0 0.577 17.8 18.2 3 - D111744 481,146 7,796,218 <td>D111729</td> <td>487,558</td> <td>7,803,064</td> <td>5.5</td> <td>1.4</td> <td>0.424</td> <td>17.6</td> <td>19.8</td> <td>2</td> <td>4</td>	D111729	487,558	7,803,064	5.5	1.4	0.424	17.6	19.8	2	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111731	487,552	7,803,024	5.4	2.3	0.510	21.7	18.6	-	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111732	487,534	7,802,968	5.3	2.3	0.482	23.3	18.1	2	3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111733	487,532	7,802,913	5.5	2.6	0.439	18.2	13.7	-	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111734	487,536	7,802,868	5.6	-	0.504	20.2	13.4	1	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111735	487,531	7,802,818	7.1	0.9	0.475	23.6	15.4	2	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111736	487,537	7,802,779	6.3	1.7	0.502	21.6	14.7	1	3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111737	487,545	7,802,723	6.3	2.2	0.464	21.1	17.9	-	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111738	487,525	7,802,672	6.6	0.6	0.470	21.3	16.1	1	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111739	487,535	7,802,608	7.1	1.4	0.465	23.2	18.9	2	5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111740	487,530	7,802,560	6.7	-	0.458	23.0	17.7	1	5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111741	481,140	7,796,067	9.3	0.6	0.600	20.1	27.3	2	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111742	481,130	7,796,118	7.5	1.0	0.577	17.8	18.2	3	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111743	481,139	7,796,176	8.1	1.7	0.539	18.7	25.7	-	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111744	481,146	7,796,218	9.7	2.4	0.658	20.3	25.4	-	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111745	481,132	7,796,271	8.7	2.1	0.748	22.1	19.6	2	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111746	481,130	7,796,323	8.0	2.0	0.649	19.8	19.4	2	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111747	481,133	7,796,371	8.1	2.1	0.616	19.9	20.1	2	3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111748	481,131	7,796,419	10.4	2.4	0.645	22.4	25.8	2	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111749	481,148	7,796,473	9.4	1.3	0.632	22.9	27.4	-	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111751	481,132	7,796,519	7.2	1.3	0.541	17.1	20.0	2	6
D111753 481,141 7,796,631 8.4 0.8 0.514 19.9 22.9 - - D111754 481,124 7,796,665 8.5 1.1 0.609 20.0 22.1 2 - D111755 481,133 7,796,716 8.0 1.8 0.592 18.0 17.6 1 3 D111756 481,142 7,796,768 8.6 0.5 0.568 20.5 21.9 - 3 D111757 481,134 7,796,819 8.3 1.5 0.564 19.7 20.1 - 4 D111758 481,128 7,796,862 8.1 0.7 0.591 19.0 16.6 3 3 D111759 481,128 7,796,920 9.0 0.7 0.564 21.7 23.5 1 7 D111761 481,131 7,796,972 8.6 1.8 0.545 23.5 28.2 1 6 D111762 481,129 7,797,019 8.	D111752	481,140	7,796,568	9.0	1.0	0.534	23.1	27.3	1	3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111753	481,141	7,796,631	8.4	0.8	0.514	19.9	22.9	-	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D111754	481,124	7,796,665	8.5	1.1	0.609	20.0	22.1	2	-
D111756 481,142 7,796,768 8.6 0.5 0.568 20.5 21.9 - 3 D111757 481,134 7,796,819 8.3 1.5 0.564 19.7 20.1 - 4 D111758 481,139 7,796,862 8.1 0.7 0.591 19.0 16.6 3 3 D111759 481,128 7,796,920 9.0 0.7 0.564 21.7 23.5 1 7 D111761 481,131 7,796,972 8.6 1.8 0.545 23.5 28.2 1 6 D111762 481,129 7,797,019 8.8 1.1 0.564 19.9 23.1 - 3 D111763 481,131 7,797,069 8.9 1.0 0.558 18.0 19.9 - - D111764 481,125 7,797,116 10.3 0.8 0.578 21.8 22.8 2 4 D111765 480,740 7,797,074 8	D111755	481,133	7,796,716	8.0	1.8	0.592	18.0	17.6	1	3
D111757 481,134 7,796,819 8.3 1.5 0.564 19.7 20.1 - 4 D111758 481,139 7,796,862 8.1 0.7 0.591 19.0 16.6 3 3 D111759 481,128 7,796,920 9.0 0.7 0.564 21.7 23.5 1 7 D111761 481,131 7,796,972 8.6 1.8 0.545 23.5 28.2 1 6 D111762 481,129 7,797,019 8.8 1.1 0.564 19.9 23.1 - 3 D111763 481,131 7,797,019 8.8 1.1 0.564 19.9 23.1 - - D111764 481,125 7,797,019 8.3 1.4 0.578 21.8 22.8 2 4 D111764 481,125 7,797,074 8.3 1.4 0.579 20.8 17.1 2 4 D111766 480,739 7,797,022 9.	D111756	481,142	7,796,768	8.6	0.5	0.568	20.5	21.9	-	3
D111758 481,139 7,796,862 8.1 0.7 0.591 19.0 16.6 3 3 D111759 481,128 7,796,920 9.0 0.7 0.564 21.7 23.5 1 7 D111761 481,131 7,796,972 8.6 1.8 0.545 23.5 28.2 1 6 D111762 481,129 7,797,019 8.8 1.1 0.564 19.9 23.1 - 3 D111763 481,131 7,797,069 8.9 1.0 0.558 18.0 19.9 - - D111764 481,125 7,797,116 10.3 0.8 0.578 21.8 22.8 2 4 D111765 480,740 7,797,074 8.3 1.4 0.579 20.8 17.1 2 4 D111766 480,739 7,797,074 8.3 0.6 0.601 22.7 20.4 2 - D111767 480,747 7,796,966 8	D111757	481,134	7,796,819	8.3	1.5	0.564	19.7	20.1	-	4
D111759 481,128 7,796,920 9.0 0.7 0.564 21.7 23.5 1 7 D111761 481,131 7,796,972 8.6 1.8 0.545 23.5 28.2 1 6 D111762 481,129 7,797,019 8.8 1.1 0.564 19.9 23.1 - 3 D111763 481,131 7,797,069 8.9 1.0 0.558 18.0 19.9 - - D111764 481,125 7,797,116 10.3 0.8 0.578 21.8 22.8 2 4 D111765 480,740 7,797,074 8.3 1.4 0.579 20.8 17.1 2 4 D111766 480,739 7,797,022 9.6 1.7 0.603 20.8 23.6 1 5 D111767 480,747 7,796,966 8.3 0.6 0.601 22.7 20.4 2 - D111768 480,743 7,796,923 8	D111758	481,139	7,796,862	8.1	0.7	0.591	19.0	16.6	3	3
D111761 481,131 7,796,972 8.6 1.8 0.545 23.5 28.2 1 6 D111762 481,129 7,797,019 8.8 1.1 0.564 19.9 23.1 - 3 D111763 481,131 7,797,069 8.9 1.0 0.558 18.0 19.9 - - D111764 481,125 7,797,116 10.3 0.8 0.578 21.8 22.8 2 4 D111765 480,740 7,797,074 8.3 1.4 0.579 20.8 17.1 2 4 D111766 480,739 7,797,022 9.6 1.7 0.603 20.8 23.6 1 5 D111766 480,747 7,796,966 8.3 0.6 0.601 22.7 20.4 2 - D111768 480,743 7,796,923 8.6 1.2 0.607 22.5 22.5 - - D111769 480,731 7,796,862 8	D111759	481,128	7,796,920	9.0	0.7	0.564	21.7	23.5	1	7
D111762 481,129 7,797,019 8.8 1.1 0.564 19.9 23.1 - 3 D111763 481,131 7,797,069 8.9 1.0 0.558 18.0 19.9 - - - D111764 481,125 7,797,116 10.3 0.8 0.578 21.8 22.8 2 4 D111765 480,740 7,797,074 8.3 1.4 0.579 20.8 17.1 2 4 D111766 480,739 7,797,022 9.6 1.7 0.603 20.8 23.6 1 5 D111767 480,747 7,796,966 8.3 0.6 0.601 22.7 20.4 2 - D111768 480,743 7,796,923 8.6 1.2 0.607 22.5 22.5 - - D111769 480,731 7,796,862 8.1 1.8 0.572 21.3 20.9 - 3	D111761	481,131	7,796,972	8.6	1.8	0.545	23.5	28.2	1	6
D111763 481,131 7,797,069 8.9 1.0 0.558 18.0 19.9 - - D111764 481,125 7,797,116 10.3 0.8 0.578 21.8 22.8 2 4 D111765 480,740 7,797,074 8.3 1.4 0.579 20.8 17.1 2 4 D111766 480,739 7,797,022 9.6 1.7 0.603 20.8 23.6 1 5 D111767 480,747 7,796,966 8.3 0.6 0.601 22.7 20.4 2 - D111768 480,743 7,796,923 8.6 1.2 0.607 22.5 22.5 - - D111769 480,731 7,796,862 8.1 1.8 0.572 21.3 20.9 - 3	D111762	481,129	7,797,019	8.8	1.1	0.564	19.9	23.1	-	3
D111764 481,125 7,797,116 10.3 0.8 0.578 21.8 22.8 2 4 D111765 480,740 7,797,074 8.3 1.4 0.579 20.8 17.1 2 4 D111766 480,739 7,797,022 9.6 1.7 0.603 20.8 23.6 1 5 D111767 480,747 7,796,966 8.3 0.6 0.601 22.7 20.4 2 - D111768 480,743 7,796,923 8.6 1.2 0.607 22.5 22.5 - - D111769 480,731 7,796,862 8.1 1.8 0.572 21.3 20.9 - 3	D111763	481,131	7,797,069	8.9	1.0	0.558	18.0	19.9	-	-
D111765 480,740 7,797,074 8.3 1.4 0.579 20.8 17.1 2 4 D111766 480,739 7,797,022 9.6 1.7 0.603 20.8 23.6 1 5 D111767 480,747 7,796,966 8.3 0.6 0.601 22.7 20.4 2 - D111768 480,743 7,796,923 8.6 1.2 0.607 22.5 22.5 - - D111769 480,731 7,796,862 8.1 1.8 0.572 21.3 20.9 - 3	D111764	481,125	7,797,116	10.3	0.8	0.578	21.8	22.8	2	4
D111766 480,739 7,797,022 9.6 1.7 0.603 20.8 23.6 1 5 D111767 480,747 7,796,966 8.3 0.6 0.601 22.7 20.4 2 - D111768 480,743 7,796,923 8.6 1.2 0.607 22.5 22.5 - - D111769 480,731 7,796,862 8.1 1.8 0.572 21.3 20.9 - 3	D111765	480,740	7,797,074	8.3	1.4	0.579	20.8	17.1	2	4
D111767 480,747 7,796,966 8.3 0.6 0.601 22.7 20.4 2 - D111768 480,743 7,796,923 8.6 1.2 0.607 22.5 22.5 - - D111769 480,731 7,796,862 8.1 1.8 0.572 21.3 20.9 - 3	D111766	480,739	7,797,022	9.6	1.7	0.603	20.8	23.6	1	5
D111768 480,743 7,796,923 8.6 1.2 0.607 22.5 22.5 - - D111769 480,731 7,796,862 8.1 1.8 0.572 21.3 20.9 - 3	D111767	480,747	7,796,966	8.3	0.6	0.601	22.7	20.4	2	-
D111769 480,731 7,796,862 8.1 1.8 0.572 21.3 20.9 - 3	D111768	480,743	7,796,923	8.6	1.2	0.607	22.5	22.5	-	-
	D111769	480,731	7,796,862	8.1	1.8	0.572	21.3	20.9	-	3

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D111770	480,728	7,796,821	8.9	1.5	0.642	21.0	24.2	-	5
D111771	480,739	7,796,762	9.4	1.9	0.610	23.2	23.8	-	7
D111772	480,751	7,796,717	7.7	1.1	0.701	19.6	19.7	2	7
D111773	480,746	7,796,666	8.7	1.9	0.683	24.1	24.3	2	3
D111774	480,745	7,796,617	8.3	1.0	0.654	21.9	20.5	2	3
D111775	480,743	7,796,568	8.9	1.5	0.657	24.0	23.1	2	1
D111777	480,743	7,796,522	7.6	1.3	0.561	17.9	19.2	2	4
D111778	480,741	7,796,471	8.0	1.8	0.568	21.6	21.7	-	4
D111779	480,741	7,796,419	8.8	1.8	0.605	23.6	23.4	2	3
D111780	480,743	7,796,373	9.0	1.0	0.627	24.3	23.4	2	6
D111781	480,740	7,796,315	7.1	0.8	0.607	16.8	15.3	-	6
D111782	480,729	7,796,275	7.8	0.7	0.535	21.6	24.3	-	7
D111783	480,739	7,796,211	8.7	0.9	0.638	24.2	23.5	-	2
D111784	480,749	7,796,169	7.8	1.9	0.569	20.2	20.6	2	6
D111785	480,733	7,796,114	8.0	1.3	0.569	19.9	22.3	4	5
D111786	480,742	7,796,079	7.8	1.2	0.596	20.3	19.9	2	3
D111787	479,943	7,796,421	7.4	0.7	0.514	16.4	18.2	2	6
D111788	479,941	7,796,370	6.9	1.8	0.506	15.6	15.9	1	3
D111789	479,937	7,796,320	7.4	-	0.523	18.6	17.7	1	4
D111791	479,941	7,796,274	9.1	1.9	0.527	19.1	27.4	3	4
D111792	479,937	7,796,218	7.8	1.4	0.543	16.0	16.0	-	2
D111793	479,948	7,796,172	7.4	0.7	0.493	14.6	17.1	2	2
D111794	479,945	7,796,119	7.7	1.5	0.452	16.2	19.1	1	2
D111795	480,334	7,796,080	9.5	1.5	0.676	16.5	16.7	1	2
D111796	480,339	7,796,120	9.9	1.4	0.704	18.6	18.7	-	2
D111797	480,341	7,796,168	9.2	1.3	0.678	16.7	16.5	-	2
D111798	480,328	7,796,219	9.1	1.2	0.693	18.5	17.4	-	2
D111799	480,326	7,796,264	8.1	1.4	0.615	17.9	16.7	-	2
D111801	480,340	7,796,317	9.8	1.4	0.616	18.8	22.0	-	2
D111802	480,333	7,796,367	9.7	2.0	0.670	22.7	25.7	1	2
D111803	480,336	7,796,412	9.1	1.7	0.632	18.0	20.7	3	3
D111804	480,342	7,796,465	8.9	1.4	0.631	17.2	22.5	2	3
D111805	480,329	7,796,514	11.0	1.1	0.766	22.5	24.1	-	3
D111806	480,336	7,796,562	8.6	0.7	0.673	18.0	22.2	1	4
D111807	480,323	7,796,621	8.6	1.6	0.753	18.0	21.3	2	2
D111808	480,323	7,796,670	9.2	1.4	0.594	19.2	22.9	1	5
D111809	480.324	7.796.728	9.4	1.4	0.627	19.8	29.1	-	2
D111810	480.319	7.796.772	8.7	0.6	0.630	19.2	24.5	2	1
D111811	480.338	7.796.821	9.3	1.1	0.546	19.1	27.5	2	6
D111812	480.340	7.796.864	10.2	0.9	0.621	19.7	24.7	-	4
D111813	480.335	7.796.913	9.8	1.8	0.626	19.4	24.1	2	2
D111814	480.338	7,796,970	9.7	1.4	0.644	19.4	22.4	3	2
D111815	479.932	7,796.920	9.3	1.5	0.653	20.8	22.2	-	-
D111816	479.939	7,796.869	9.6	1.0	0.636	19.6	21.4	1	2
D111817	479.940	7,796.820	8.8	2.7	0.595	19.1	19.9	1	2
D111818	479,921	7,796,774	7.9	2.2	0.541	19.4	14.0	-	3
D111819	479.928	7,796.721	8.8	1.1	0.493	20.4	22.0	-	3
D111820	479.934	7.796.670	8.7	1.1	0.588	18.5	14.9	1	2
D111821	479.938	7,796.630	8.9	0.6	0.575	18.3	15.8	-	-
D111822	479.944	7,796.579	9.0	1.1	0.601	19.6	17.5	1	5
D111823	479.944	7,796.528	8.7	0.7	0.572	18.0	14.7	1	3
D111824	479.937	7,796,468	9.4	1.8	0.569	23.0	19.4	2	4
D111825	481.231	7,792,869	7.7	1.2	0.470	19.2	20.6	1	1
D111827	481 248	7,792,816	8.5	1.8	0.508	16.3	17.6	-	2
D111828	481 233	7,792,768	11.8	1.8	0.647	21.4	26.2	-	1
D111829	481.241	7,792,720	9.0	1.4	0.509	18.2	20.8	2	-
D111831	481 225	7 792 663	6.3	1.6	0.522	15.8	17.7	-	1
D111832	481 231	7 792 621	5.2	27	0.521	14.6	11.5	2	1
D111833	481 231	7,792,562	6.0	1.9	0.557	16.3	18.9	2	5
500		.,,	0.0		5.001			-	~

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D111834	481,227	7,792,527	13.3	2.3	0.648	17.0	13.6	1	5
D111835	481,240	7,792,465	9.9	2.7	0.502	17.7	21.8	-	-
D111836	481,237	7,792,419	8.4	1.4	0.520	18.6	21.7	-	1
D111837	481,044	7,792,422	6.8	1.8	0.522	16.7	13.4	2	2
D111838	481,033	7,792,466	7.0	2.4	0.549	15.2	13.6	1	-
D111839	481,041	7,792,526	7.6	1.4	0.508	18.0	23.8	-	5
D111840	481,040	7,792,565	6.4	1.8	0.500	15.9	16.4	-	4
D111841	481,036	7,792,617	7.8	1.3	0.549	17.1	16.1	-	2
D111842	481,038	7,792,668	7.9	2.1	0.563	17.0	21.3	2	1
D111843	481,037	7,792,721	8.1	2.1	0.546	17.1	21.5	3	2
D111844	481,042	7,792,764	8.6	1.7	0.562	18.3	20.1	2	2
D111845	481,037	7,792,820	8.9	1.5	0.638	17.9	20.2	-	1
D111846	481,035	7,792,883	8.1	1.2	0.599	16.9	19.4	1	3
D111847	481,035	7,792,916	8.6	-	0.541	17.1	20.6	1	4
D111848	481,041	7,792,967	7.4	-	0.537	15.4	20.2	-	4
D111849	481,044	7,793,014	6.7	2.3	0.578	19.1	20.2	3	-
D111850	481,037	7,793,066	6.8	2.8	0.545	17.9	18.0	1	3
D111852	481,020	7,793,119	6.6	1.9	0.528	19.0	24.6	-	1
D111853	481,039	7,793,165	6.0	0.8	0.505	18.5	19.8	-	4
D111854	481,030	7,793,230	8.2	1.9	0.510	17.7	22.5	2	1
D111855	481,034	7,793,274	8.8	2.4	0.532	16.5	18.0	-	1
D111856	481,035	7,793,320	8.2	2.5	0.507	17.3	17.9	2	-
D111857	481,027	7,793,370	8.3	1.5	0.517	17.6	24.7	1	-
D111858	481,244	7,793,366	6.4	2.1	0.487	16.4	23.7	-	2
D111859	481,231	7,793,322	7.2	1.7	0.506	15.3	18.4	1	-
D111861	481,236	7,793,261	5.3	2.9	0.527	14.1	14.7	2	3
D111862	481,249	7,793,226	6.1	1.1	0.463	18.1	20.5	-	1
D111863	481,234	7,793,167	6.7	1.7	0.530	16.0	19.3	2	3
D111864	481,257	7,793,120	7.8	1.7	0.515	19.8	24.5	-	4
D111865	481,235	7,793,069	7.2	0.9	0.546	18.8	19.2	2	4
D111866	481,242	7,793,022	8.1	0.8	0.528	19.2	21.4	1	-
D111867	481,254	7,792,968	10.0	1.0	0.532	17.7	22.4	1	-
D111868	481,245	7,792,920	9.0	0.8	0.544	18.1	16.8	1	3
D111869	481,626	7,792,860	7.0	1.3	0.549	17.3	21.1	1	4
D111870	481,655	7,792,797	5.4	2.3	0.502	17.9	17.0	2	-
D111871	481,656	7,792,624	5.8	1.1	0.504	15.2	21.9	1	1
D111872	481,660	7,792,570	6.1	1.5	0.508	17.3	26.6	2	-
D111873	481,650	7,792,462	6.8	0.7	0.486	17.7	23.5	-	4
D111874	481,643	7,792,398	6.3	1.9	0.510	17.8	17.8	3	1
D111875	481,434	7,792,419	6.6	1.8	0.497	18.7	21.4	-	1
D111877	481,433	7,792,464	5.9	2.1	0.508	17.7	25.4	3	1
D111878	481,428	7,792,530	6.1	1.9	0.494	16.5	19.5	2	1
D111879	481,436	7,792,568	5.6	0.9	0.494	16.8	20.7	3	2
D111880	481,438	7,792,618	6.1	1.0	0.476	17.2	23.0	-	2
D111881	481,438	7,792,723	6.7	1.0	0.551	16.6	18.2	-	-
D111882	481,429	7,792,776	6.6	1.1	0.604	16.9	21.6	-	2
D111883	481,430	7,792,878	7.5	1.2	0.534	15.2	18.6	-	-
D111884	481,427	7,792,919	10.0	1.7	0.568	17.2	24.7	2	3
D111885	481,437	7,792,970	6.2	-	0.522	18.1	16.4	-	2
D111886	481,440	7,793,019	6.5	1.1	0.508	17.5	20.6	-	2
D111887	481,439	7,793,064	6.8	1.2	0.528	17.4	20.4	2	3
D111888	481,441	7,793,113	1.6	1.4	0.548	16.3	21.1	2	3
D111889	481,441	7,793,158	6.3	1.1	0.504	15.6	18.8	-	2
D111891	481,441	7,793,217	6.4	2.8	0.561	18.6	21.2	1	2
D111892	481,425	7,793,264	6.2	1.4	0.480	18.9	27.8	-	3
D111893	481,448	7,793,309	6.2	3.0	0.551	18.0	23.1	3	3
D111894	481,426	7,793,369	8.1	3.2	0.485	17.3	30.7	2	-
D111895	481,651	7,793,372	6.0	3.6	0.551	15.5	14.4	-	-
D111896	481,650	7,793,322	5.7	1.5	0.518	14.6	17.0	3	4

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D111897	481,638	7,793,254	7.1	2.2	0.524	16.9	22.6	-	1
D111898	481,649	7,793,229	7.4	0.9	0.548	20.1	25.0	-	4
D111899	481,638	7,793,104	6.5	1.9	0.543	16.9	16.7	-	1
D111901	481,641	7,793,081	6.2	0.6	0.517	18.1	20.1	2	3
D111903	481,639	7,792,933	6.9	1.2	0.498	19.0	26.1	1	2
D111904	482,037	7,792,929	6.8	1.9	0.507	16.9	22.5	-	2
D111905	482,030	7,792,969	6.6	2.7	0.508	15.0	15.7	2	1
D111906	482,016	7,793,024	6.0	1.4	0.530	17.8	17.7	2	2
D111907	482,032	7,793,070	7.1	2.3	0.542	18.4	19.3	-	2
D111908	482,025	7,793,122	7.5	2.3	0.457	16.3	21.1	2	-
D111909	482,031	7,793,168	7.9	2.3	0.538	16.4	16.9	2	2
D111910	482,034	7,793,218	8.1	1.8	0.599	22.1	29.5	-	4
D111911	482,043	7,793,282	9.8	2.3	0.548	16.7	27.1	1	-
D111912	482,036	7,793,320	8.5	2.2	0.545	18.4	22.2	1	-
D111913	482,024	7,793,370	10.5	1.6	0.590	17.0	27.7	-	3
D111914	481,844	7,793,316	7.2	0.7	0.561	17.8	20.7	2	2
D111915	481,849	7,793,180	6.1	3.0	0.519	16.3	23.2	2	1
D111916	481,846	7,793,063	5.3	2.6	0.550	17.9	19.6	-	5
D111917	481,842	7,793,026	6.7	2.7	0.500	15.8	23.0	1	-
D111918	481,842	7,792,973	6.6	2.6	0.516	16.2	25.3	1	4
D111919	481,845	7,792,926	5.5	3.0	0.499	15.8	22.0	-	2
D111920	481,841	7,792,874	6.9	2.3	0.503	17.4	28.8	-	3
D111921	481,852	7,792,697	6.4	2.0	0.492	16.7	24.6	-	2
D111922	481,831	7,792,679	5.2	2.5	0.536	14.6	17.6	-	1
D111923	481,839	7,792,616	6.9	1.2	0.548	16.1	22.3	2	-
D111924	481,825	7,792,566	6.2	0.9	0.542	19.1	24.7	1	2
D111925	481,830	7,792,517	6.4	2.2	0.539	16.0	22.8	-	2
D111927	481,848	7,792,466	5.7	2.7	0.528	17.3	16.9	-	-
D111928	481,850	7,792,419	5.3	2.5	0.533	16.8	20.6	-	1
D111929	482,045	7,792,421	5.9	1.6	0.534	17.7	19.0	-	-
D111931	482,029	7,792,475	5.3	3.3	0.550	15.3	14.8	1	-
D111932	482,039	7,792,513	6.7	2.4	0.550	14.3	17.3	1	-
D111933	482,039	7,792,561	6.6	3.2	0.502	16.5	20.0	-	2
D111934	482,025	7,792,634	6.3	2.4	0.488	17.4	22.2	-	2
D111935	482,038	7,792,730	6.7	3.2	0.518	16.8	20.5	2	1
D111936	482,041	7,792,766	5.7	1.7	0.470	16.0	18.8	1	2
D111937	482,051	7,792,819	6.3	2.0	0.494	16.7	18.8	-	4
D111938	482,337	7,792,929	6.1	2.2	0.608	17.2	14.3	1	2
D111939	482,336	7,792,964	6.3	3.3	0.530	17.9	17.3	-	2
D111940	482,333	7,793,013	7.2	2.0	0.509	17.7	21.1	2	4
D111941	482,341	7,793,074	6.1	2.2	0.510	10.0	15.9	-	4
D111942	482,336	7,793,135	6.6	1.9	0.535	16.8	19.5	3	2
D111943	482,332	7,793,176	6.1	2.5	0.473	16.5	14.9	2	5
D111944	482,328	7,793,225	5.0	1.8	0.518	19.4	19.0	1	1
D111945	482,334	7,793,267	5.9	3.3	0.480	18.5	10.8	2	2
D111946	402,334	7,793,321	5.9	3.5	0.467	19.8	10.7	I	2
D111947	482,337	7,793,364	0.2	7.2	0.574	18.8	15.3	-	2
D111946	402,244	7,793,307	7.5	3.5	0.532	18.0	10.2	2	5
D111949	402,244	7,793,320	7.0	2.2	0.470	20.4	19.2	I	ა ი
D111900	402,201	7 702 026	7.0	0.0	0.002	40.0	21.3	-	3
D111952	402,210	7 703 161	7.0	2.3	0.00	10.Z	20.9	<u>۲</u>	4
D111900	402,200	7 702 100	7.0	1.0	0.490	10.4	22.9	I	2
D111954	402,239	7 702 074	1.0	3.5 2.7	0.409	17.0	21.0	-	ა ი
D111900	402,209	7 702 012	6.1	4.7	0.409	16.0	14.0	-	5
D111900	402,200	7 702 070	6.6	1.7 0.9	0.044	10.0	14.0	J 1	6
D11190/	402,200	7 702 025	7 /	1.5	0.401	17.0	10.9	I	1
D111900	402,200	7 702 966	6.6	1.U 2.Q	0.010	17.0	17.0	-	4 2
D111061	402,229	7 702 812	7 1	2.0	0.400	18.1	22.0	-	<u>ک</u> ۸
וספוווס	402,232	1,192,013	7.1	2.1	0.400	10.1	22.9	2	4

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D111962	482,235	7,792,759	8.6	1.3	0.462	18.4	25.2	2	1
D111963	482,239	7,792,712	7.3	1.6	0.545	19.4	19.0	-	-
D111964	482,222	7,792,621	8.0	2.1	0.400	19.5	25.7	2	5
D111965	482,223	7,792,580	8.4	3.1	0.439	18.8	24.4	-	3
D111966	482,239	7,792,528	7.4	2.2	0.517	19.2	21.7	3	-
D111967	482,245	7,792,462	7.7	2.0	0.479	16.5	20.1	2	1
D111968	482,228	7,792,412	7.4	3.2	0.450	18.3	23.8	2	2
D111969	482,345	7,792,358	8.4	2.2	0.578	18.9	19.3	1	2
D111970	482,343	7,792,410	9.5	1.7	0.519	21.4	29.2	3	-
D111971	482,349	7,792,473	9.4	-	0.553	20.4	27.5	1	1
D111972	482,340	7,792,515	8.2	5.8	0.572	19.2	19.1	2	-
D111973	482,343	7,792,559	8.9	3.5	0.518	20.4	28.9	-	3
D111974	482,329	7,792,619	8.1	4.1	0.538	19.9	24.6	2	1
D111975	482,344	7,792,673	7.4	3.6	0.561	18.7	20.6	2	4
D111976	482,324	7,792,719	8.5	3.1	0.553	20.9	26.5	-	3
D111978	482,352	7,792,767	8.3	2.2	0.484	20.0	27.3	-	2
D111979	482,333	7,792,819	8.6	2.1	0.550	20.2	27.7	1	6
D111980	482,555	7,792,917	5.3	1.1	0.416	18.5	19.2	2	1
D111981	482,545	7,792,970	7.1	1.5	0.426	20.7	24.5	-	4
D111982	482,532	7,793,018	6.2	2.1	0.422	20.4	22.5	1	3
D111983	482,534	7,792,865	7.7	1.3	0.406	20.2	29.4	-	4
D111984	482,535	7,793,067	5.8	2.4	0.495	20.8	21.6	2	5
D111985	482,536	7,793,126	7.1	0.7	0.444	20.1	25.9	-	5
D111986	482,527	7,793,170	7.8	2.6	0.511	20.9	26.6	-	3
D111987	482,536	7,793,220	6.7	1.3	0.432	21.4	23.9	-	3
D111988	482,534	7,793,266	7.2	1.9	0.487	21.1	25.3	-	3
D111989	482,537	7,793,321	7.7	5.4	0.479	18.1	27.1	2	6
D111991	482,537	7,793,363	6.9	11.1	0.529	22.2	23.7	2	4
D111992	482,444	7,793,374	7.9	2.0	0.580	22.6	29.7	2	7
D111993	482,433	7,793,333	8.3	1.4	0.550	22.5	27.7	2	6
D111994	482,451	7,793,282	7.5	2.9	0.462	22.8	29.4	2	7
D111995	482,440	7,793,218	7.4	5.2	0.573	17.0	17.2	-	2
D111996	482,435	7,793,176	6.4	4.4	0.581	20.0	15.3	-	3
D111997	482,446	7,793,119	6.5	4.6	0.528	18.3	15.7	2	-
D111998	482,437	7,793,071	6.1	3.5	0.574	14.9	12.6	-	3
D111999	482,440	7,793,018	8.5	3.1	0.565	16.7	19.0	-	-
D112068	482,442	7,792,967	6.4	1.4	0.494	16.6	16.9	1	1
D112069	482.442	7.792.916	7.2	1.6	0.473	19.4	24.7	1	4
D112070	482.437	7.792.869	5.8	2.0	0.459	18.9	16.5	1	-
D112071	482,441	7,792,815	5.6	2.9	0.429	17.9	15.7	1	-
D112072	482,438	7,792,776	7.1	1.9	0.466	20.3	21.1	1	1
D112073	482,442	7,792,715	7.0	2.7	0.475	19.1	23.6	-	4
D112074	482,439	7,792,676	6.2	1.8	0.459	17.3	18.2	3	3
D112075	482,443	7,792,626	6.0	3.1	0.492	18.7	17.2	3	3
D112076	482,429	7,792,564	6.0	2.9	0.567	18.4	17.1	3	5
D112077	482,438	7,792,527	7.0	2.0	0.480	19.2	22.8	-	3
D112078	482,438	7,792,527	5.8	2.3	0.495	17.9	17.3	2	4
D112079	482.458	7.792.490	6.9	2.8	0.446	19.4	23.2	-	4
D112080	482,463	7,792,428	7.9	2.9	0.558	18.2	23.4	-	3
D112081	482,429	7,792,383	8.0	0.9	0.521	18.9	24.8	1	3
D112082	482,542	7,792,379	7.1	3.1	0.541	18.7	15.9	2	3
D112083	482,537	7,792,420	6.7	2.8	0.532	19.1	15.4	-	2
D112084	482,540	7,792,477	7.1	1.4	0.445	19.4	20.9	2	5
D112085	482,539	7,792,516	7.2	2.8	0.509	19.6	18.4	1	2
D112086	482,558	7,792,565	7.1	2.7	0.517	16.8	18.2	2	2
D112087	482,534	7,792,617	6.2	1.8	0.553	19.3	19.7	2	2
D112088	482.543	7,792.666	7.5	1.5	0.498	17.3	18.7	1	2
D112089	482.545	7,792.719	7.4	1.6	0.522	20.6	20.8	1	4
D112091	482,553	7,792,764	7.9	1.0	0.485	21.2	26.0	2	5
	,	,,				==			-

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D112092	482,532	7,792,825	5.9	1.9	0.534	20.7	16.5	1	4
D112093	482,153	7,792,865	6.6	3.8	0.524	19.4	21.7	-	4
D112094	482,131	7,792,917	6.6	3.6	0.561	19.4	22.6	1	4
D112095	482,136	7.793.014	7.8	3.1	0.566	19.9	20.7	3	3
D112096	482,136	7.793.071	7.0	1.6	0.513	20.0	22.0	-	5
D112097	482.141	7.793.169	7.0	3.4	0.423	19.3	18.4	-	3
D112098	482,148	7.793.220	6.8	1.9	0.432	19.8	17.2	-	1
D112099	482,158	7.793.271	7.2	2.1	0.511	22.4	18.6	3	3
D113501	482 143	7 793 320	7.4	3.0	0.561	19.8	18.7	2	-
D113502	482 125	7 793 374	7.7	1.6	0.510	24.0	20.0	-	4
D113503	481 935	7 793 270	8.1	21	0.476	18.5	20.2	1	-
D113504	481 961	7 793 218	7.4	4 1	0.552	18.4	17.0	_	-
D113505	481 940	7 793 170	7.6	2.9	0.486	20.3	19.9	3	5
D113506	481 947	7 793 121	7.3	2.0	0.465	19.2	20.8	1	3
D113507	481 952	7,793,024	6.7	2.0	0.467	17.5	20.0	2	1
D113508	481 950	7,793,076	5.9	2.0	0.520	16.3	14 7	2	4
D113509	481 940	7 792 973	5.7	3.1	0.480	17.1	17.8	2	1
D113511	401,340	7 702 863	5.7	4.0	0.531	15.6	12.7	1	3
D113512	481,935	7,792,005	5.2	4.0	0.531	16.9	14.0	ו ר	3
D113512	401,955	7,792,020	8.0	2.0	0.340	18.2	20.0	2	2
D113514	400,902	7,780,300	7.6	2.5	0.482	10.2	16.7	-	3
D113514	489,039	7,780,392	F 2	1.0	0.333	17.1	16.7		- +
D113515	409,007	7,780,399	3.3	1.0	0.494	10.0	10.0	2	2
D113516	409,134	7,760,390	0.7	1.0	0.490	10.0	19.9	3	4
D113517	409,103	7,780,393	0.7	2.0	0.465	16.0	10.9	3	-
D113516	409,241	7,780,394	0.0	2.3	0.469	15.3	10.0	2	
D113519	409,291	7,780,396	0.3	2.3	0.454	17.0	10.2	-	5
D113520	489,341	7,780,392	9.3	1.5	0.487	15.5	14.2	1	-
D113521	489,387	7,780,394	10.7	0.6	0.504	18.1	17.2	-	5
D113522	409,433	7,780,395	10.9	1.2	0.498	10.0	10.0	-	5
D113523	489,481	7,780,390	12.9	0.8	0.520	20.0	19.0	1	-
D113524	409,534	7,700,300	11.5	1.2	0.469	18.2	15.0	1	3 2
D113525	489,584	7,780,392	30.2	1.4	0.526	18.3	17.0	2	3
D113527	489,581	7,780,589	38.0	1.7	0.504	17.2	18.1	2	-
D113528	489,526	7,780,591	10.9	0.9	0.567	15.9	14.6	2	2
D113529	489,478	7,780,597	9.9	1.2	0.541	16.1	17.9	2	0
D113531	489,441	7,780,592	9.5	0.7	0.526	17.7	10.5	1	-
D113532	489,386	7,780,592	12.1	0.8	0.490	16.3	17.6	1	4
D113533	489,334	7,780,594	9.7	1.6	0.486	17.2	17.4	1	4
D113534	489,286	7,780,598	9.0	1.8	0.473	17.7	18.9	3	6
D113535	489,238	7,780,600	8.6	1.2	0.537	17.4	20.6	-	1
D113536	489,190	7,780,595	7.0	3.5	0.458	17.6	20.7	3	5
D113537	489,132	7,780,596	7.9	2.9	0.474	17.7	16.2	-	-
D113538	489,087	7,780,593	8.0	1.4	0.503	16.5	16.2	-	1
D113539	489,036	7,780,595	8.0	1.0	0.523	18.0	18.7	4	2
D113540	488,988	7,780,592	7.3	1.0	0.483	17.3	19.1	-	-
D113541	400,939	7,780,599	7.0	2.1	0.517	17.4	10.2	2	4
D113542	488,890	7,780,595	8.1	0.8	0.508	16.3	19.0	1	4
D113543	488,828	7,780,592	8.7	1.1	0.509	18.3	23.3	3	4
D113544	488,788	7,780,595	4.3	-	0.256	11.2	13.5	4	2
D113545	488,738	7,780,590	9.9	0.6	0.527	18.8	23.2	-	5
D113546	488,685	7,780,586	1.6	1.9	0.426	16.9	17.2	2	4
D113547	488,634	7,780,588	9.5	1.0	0.434	16.6	19.4	1	3
D113548	488,588	7,780,591	8.3	1.6	0.493	16.7	16.4	2	4
D113549	488,532	7,780,597	8.7	0.7	0.480	17.7	19.8	4	2
D113551	488,478	7,780,588	9.5	0.7	0.630	16.3	15.8	2	-
D113553	488,437	7,780,589	9.9	1.0	0.459	17.4	19.7	-	5
D113554	488,386	7,780,602	11.6	1.3	0.437	20.6	17.3	2	5
D113555	488,331	7,780,608	10.4	0.6	0.401	18.5	15.7	-	2
D113556	488,338	7,780,390	12.0	1.5	0.578	17.8	15.0	2	5

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D113557	488,381	7,780,391	14.9	0.6	0.550	19.5	19.2	1	5
D113558	488,437	7,780,395	10.7	1.1	0.449	19.6	18.7	2	4
D113559	488,485	7,780,393	9.9	1.9	0.426	17.9	15.5	-	3
D113561	488,533	7,780,392	9.3	-	0.453	22.2	20.4	3	6
D113562	488,581	7,780,396	9.5	1.9	0.440	19.2	19.5	2	4
D113563	488,631	7,780,398	8.3	1.2	0.446	20.4	17.8	2	2
D113564	488,685	7,780,394	9.4	1.2	0.461	15.6	15.6	3	2
D113565	488,742	7,780,400	8.8	1.9	0.428	17.0	17.4	1	-
D113566	488,789	7,780,395	9.3	2.2	0.451	15.3	20.7	2	6
D113567	488,840	7,780,391	7.5	2.9	0.456	19.7	19.5	-	-
D113568	488,882	7,780,399	6.7	1.9	0.417	17.0	17.7	-	-
D113569	488,934	7,780,399	9.2	2.0	0.493	19.9	22.3	-	4
D113570	488,985	7,781,385	22.1	1.7	0.504	15.6	14.0	-	2
D113571	489,034	7,781,396	18.7	1.8	0.511	16.5	17.2	-	7
D113572	489,085	7,781,391	14.0	2.6	0.482	13.6	12.1	1	-
D113573	489,135	7,781,392	14.5	0.9	0.511	13.9	17.7	2	7
D113574	489,192	7,781,394	8.6	0.7	0.488	14.0	12.8	3	4
D113575	489,237	7,781,402	7.5	0.8	0.387	15.3	14.3	-	4
D113577	489,284	7,781,391	8.4	-	0.366	13.2	14.2	-	3
D113578	489,339	7,781,393	7.6	1.4	0.312	13.1	15.9	2	4
D113579	489,381	7,781,394	10.1	0.8	0.298	13.8	16.3	-	7
D113580	489,429	7,781,394	8.5	2.1	0.288	13.2	15.5	1	7
D113581	489,490	7,781,388	7.6	0.8	0.299	11.5	11.6	1	4
D113582	489,534	7,781,384	6.8	1.8	0.304	12.4	13.5	1	3
D113583	489,587	7,781,398	7.0	0.9	0.294	13.0	12.1	-	4
D113584	489,601	7,780,988	14.4	2.2	0.542	18.4	17.5	-	4
D113585	489,538	7,780,992	12.0	-	0.538	20.2	14.9	2	3
D113586	489,487	7,780,985	8.1	2.2	0.456	16.2	13.2	3	2
D113587	489.440	7.780.993	7.7	1.2	0.420	15.0	12.5	-	4
D113588	489.384	7.780.990	8.0	0.9	0.524	14.7	14.1	3	7
D113589	489.337	7.780.998	9.0	1.2	0.459	14.8	15.6	2	4
D113591	489.287	7.780.999	7.2	1.7	0.454	15.9	13.1	3	5
D113592	489.237	7,780,985	8.6	1.2	0.485	17.2	16.1	2	5
D113593	489,191	7,780,989	14.2	0.9	0.493	15.6	13.3	1	3
D113594	489.136	7.780.991	8.6	0.9	0.505	14.6	13.1	2	1
D113595	489.087	7 780 995	6.5	0.6	0.391	12.1	9.6	-	3
D113596	489 039	7 780 991	8.3	1 1	0.492	14.9	15.1	2	6
D113597	489,003	7,780,998	10.9	1.1	0.432	14.5	14.2	-	3
D113598	488 944	7 780 996	8.6	1 1	0.517	15.6	20.2	2	4
D113599	488 892	7,780,994	8.2	1.1	0.469	14.4	11.9	-	2
D113601	488 846	7 780 991	8.9	2.5	0.451	14.6	13.1	4	1
D113602	488 792	7 780 990	7.3	1 1	0.440	14.8	15.4		3
D113603	488 739	7,780,998	7.0	1.1	0.408	15.8	21.8	2	7
D113604	488 678	7,780,996	8.5	0.6	0 417	14.9	16.4	1	7
D113605	488 630	7 780 990	10.4	1.6	0.449	16.2	18.4	2	2
D113606	488 590	7,780,999	10.6	1.0	0.505	18.2	17.4	1	7
D113607	488 535	7 780 002	0.0 0.0	23	0.410	17 3	16.2	2	7
D113608	488 485	7,780,991	7.5	1 1	0.230	12.4	8.3	2	-
D113609	488 434	7 780 989	7.0	0.7	0.200	14.4	9.0	2	6
D113610	488,386	7 781 004	7.0	0.5	0.299	13.3	8.4	-	2
D113611	488.326	7 780 982	8.0	-	0.415	12.5	16.4	3	6
D113612	488 287	7 781 305	12.1	1 8	0.718	20.3	20.7	1	2
D113613	488 337	7 781 208	9.8	1.0	0.485	18.3	18.2	2	-
D113614	488 381	7 781 /10	3.0 23.6	0.7	0.400	20.0	20.0	-	-
D113615	488 438	7 781 207	20.0	-	0.563	10.2	10.2	-	7
D113616	488 180	7 781 /00	25.0 25.2	-	0.505	15.0	19.2	-	6
D112617	100,400	7 781 207	20.2	1.7	0.040	14.0	1/ 5	2	0 p
D113017	400,002	7 701 205	24.9	1.7	0.433	14.9	14.0	2	0
D113018	400,000	7 704 004	49.0	1.0	0.460	10.0	20.9	-	4
D113619	488,632	1,181,394	15.7	1.5	0.469	16.7	17.4	2	-

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D113620	488,685	7,781,393	12.5	0.7	0.510	13.2	10.2	-	1
D113621	488,733	7,781,399	11.1	1.2	0.513	14.7	13.9	-	2
D113622	488,777	7,781,397	10.8	1.4	0.508	15.8	17.5	2	6
D113623	488,833	7,781,400	8.6	1.2	0.515	14.8	12.6	-	-
D113624	488,890	7,781,391	10.1	1.4	0.534	13.6	12.9	1	3
D113625	488,928	7,781,396	13.3	1.0	0.484	15.6	17.4	1	7
D113626	488,928	7,781,396	14.2	2.2	0.499	15.8	17.8	-	7
D113627	488,287	7,781,794	13.8	3.1	0.621	31.5	31.8	1	1
D113628	488,334	7,781,799	16.5	1.5	0.570	24.4	25.1	-	3
D113629	488,388	7,781,785	13.1	-	0.540	18.4	17.1	1	2
D113631	488,432	7,781,800	6.6	1.1	0.391	11.7	8.4	-	2
D113632	488,481	7,781,791	9.9	2.0	0.556	17.6	12.8	1	3
D113633	488,532	7,781,795	14.1	1.2	0.561	21.4	17.3	-	3
D113634	488,587	7,781,798	12.4	1.7	0.569	17.1	20.2	-	4
D113635	488,638	7,781,792	11.9	1.1	0.563	16.0	13.4	-	2
D113636	488,698	7,781,802	10.7	2.4	0.632	19.2	18.5	4	4
D113637	488.733	7.781.799	9.6	1.9	0.648	21.0	22.0	1	5
D113638	488,786	7.781.777	9.8	1.1	0.606	16.7	14.4	2	5
D113639	488.833	7.781.782	10.4	0.6	0.601	18.5	15.3	1	3
D113640	489.583	7.781.791	6.8	1.2	0.527	18.8	22.8	_	7
D113641	489 540	7 781 798	6.7	1.0	0.480	15.6	17.3	1	5
D113642	489 481	7 781 800	6.3	1.4	0.449	14.3	12.9	2	-
D113643	489 441	7 781 805	6.9	1 1	0.506	12.0	12.2	2	4
D113644	489 393	7 781 802	7.0	0.5	0.595	18.3	15.0	2	4
D113645	489.340	7 781 793	6.6	0.9	0.607	17.6	19.8	2	6
D113646	489 290	7 781 798	7.7	1.5	0.679	20.4	16.5	1	-
D113647	489 238	7 781 791	9.3	0.7	0.572	18.2	16.2	3	4
D113648	400,200	7,781,791	9.0	1.1	0.630	20.7	16.0	2	
D113649	489 146	7 781 796	12.0	1.1	0.600	20.7	18.3	1	1
D113651	489.080	7 781 795	9.2	0.9	0.604	17.4	14.6	1	3
D113652	489.041	7 781 794	10.3	2.3	0.611	18.0	14.0	1	2
D113653	488 991	7 781 791	10.0	1.3	0.648	19.2	16.9		6
D113654	488 932	7 781 789	22.4	1.0	0.576	19.7	17.2		3
D113655	488 884	7 781 798	12.4	1.0	0.608	18.8	17.2	2	2
D113656	400,004	7,801,062	8.5	22	0.518	23.5	22.2	2	5
D113657	490 939	7,801,002	8.3	0.7	0.539	27.2	29.0	2	5
D113658	400,000	7,801,110	9.0	1.2	0.503	25.1	26.5	1	4
D113659	490,932	7,801,174	9.1	1.2	0.579	24.8	20.0	2	3
D113661	490,909	7,801,214	8.8	1.2	0.573	25.7	20.0	-	4
D113662	490,923	7,801,270	8.6	1.4	0.552	25.9	20.3	3	1
D113663	490,936	7,801,381	8.4	0.7	0.602	20.0	20.0	-	1
D113664	400,000	7,801,361	6.5	0.6	0.596	24.0	13.7		3
D113665	491,131	7,801,301	7.2	-	0.530	20.9	15.3	- 1	-
D113666	491 143	7 801 271	6.7	0.8	0.531	25.5	22.8	-	3
D113667	491,143	7,801,271	6.9	0.0	0.531	23.3	18.4	- 2	2
D113668	491,107	7,801,224	5.8	1.8	0.001	22.3	16.5	1	5
D113669	401,102	7,801,113	7.7	0.0	0.524	24.9	31.2	2	
D113670	491,125	7,800,960	8.5	2.0	0.524	24.3	26.4	2	
D113671	491,100	7,800,900	8.9	1.3	0.531	22.1	20.4	1	
D113672	491 136	7 800 853	7.6	1.0	0.542	23.0	19.4	2	6
D113672	401 126	7 800 815	7.0	1.7	0.540	20.0 21 R	15.4	2	
D113674	401 110	7 800 770	7 /	0.7	0.570	10.0	18.2	5 2	-
D113675	401 540	7 800 772	0.5	1 /	0.570	25.0	26 A	- 1	
D113073	401,040	7 800 720	9.0	1.4	100.0	23.2	20.4	2	-
D113679	401 5/1	7 800 814	9.5 8.5	-	0.009	26.1	21.2	1	
D113670	401 527	7 800 865	0.0 & 1	- 10	0.012	20.1	20.4	י ר	5
D113600	401 520	7 800 012	10.1	1.4	0.000	20.1	22.0	2	
D113080	491,039	7,000,913	0.2	1.4	0.742	24.3	20.4	-	1
D113601	401,040	7 801 020	0.2 Q ()	2.0	0.000	20.1 50 1	10.0	1	1
0113082	491,513	1,001,030	0.0	1.9	0.022	52.1	21.3	1	I

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D113683	491,555	7,801,064	12.8	1.3	0.867	31.8	21.0	2	2
D113684	491,535	7,801,116	12.3	1.2	0.666	35.4	26.0	1	2
D113685	491,539	7,801,165	10.9	1.0	0.648	30.3	17.5	1	3
D113686	491,538	7,801,217	13.1	1.4	0.733	33.3	22.0	2	4
D113687	491,542	7,801,267	9.8	2.3	0.523	28.9	23.3	-	1
D113688	491,536	7,801,316	9.6	1.6	0.691	31.5	31.5	2	1
D113689	491,542	7,801,362	10.2	1.3	0.807	32.2	31.6	2	6
D113691	491,941	7,801,368	8.5	0.7	0.604	30.3	29.0	-	4
D113692	491,933	7,801,310	11.1	1.1	0.769	40.9	28.8	3	-
D113693	491,934	7,801,264	9.0	1.9	0.658	33.4	27.3	2	3
D113694	491,931	7,801,213	8.5	0.9	0.775	25.5	23.2	2	5
D113695	491,944	7,801,166	9.6	2.8	0.886	28.1	17.8	2	4
D113696	491,950	7,801,123	9.5	1.3	0.827	26.0	26.3	-	-
D113697	491,935	7,801,069	8.1	2.0	0.738	28.9	28.3	2	3
D113698	491,941	7,801,025	8.6	1.2	0.776	24.6	23.7	2	4
D113699	491,944	7,800,961	9.1	2.1	0.794	34.4	26.7	2	1
D113701	491,939	7,800,920	10.1	1.5	0.905	27.7	21.7	2	2
D113702	491,937	7,800,872	11.6	1.7	0.843	24.8	23.1	1	2
D113703	491,944	7,800,839	10.5	1.8	0.950	24.8	24.5	2	4
D113704	491,947	7,800,768	8.1	1.0	0.656	22.2	19.3	-	3
D113705	491,934	7,800,735	8.8	2.4	0.685	23.0	20.2	3	5
D113706	492,537	7,800,715	8.7	2.0	0.732	25.0	21.1	1	1
D113707	492,533	7,800,663	7.9	2.0	0.520	27.0	18.7	2	3
D113708	492,534	7,800,771	8.6	1.7	0.702	23.7	19.5	1	2
D113709	492,540	7,800,824	9.2	1.5	0.739	26.4	28.5	2	3
D113710	492,546	7,800,867	9.1	0.9	0.676	23.9	20.6	2	2
D113711	492,541	7,800,914	8.8	1.3	0.608	31.5	27.4	2	1
D113712	492,547	7,800,964	8.8	1.2	0.724	25.5	22.5	1	2
D113713	492,545	7,801,015	10.0	1.7	0.674	28.1	32.5	2	2
D113714	492,523	7,801,064	7.9	2.0	0.610	25.0	21.6	2	1
D113715	492,527	7,801,113	9.4	1.7	0.668	25.9	24.5	-	4
D113716	492,541	7,801,163	13.1	1.7	1.100	45.1	37.3	-	3
D113717	492,532	7,801,215	9.0	1.3	0.635	20.9	22.8	-	4
D113718	492,523	7,801,271	9.2	-	0.718	25.3	19.9	2	3
D113719	492,538	7,801,315	7.4	2.0	0.638	22.1	20.3	-	2
D113720	492,531	7,801,364	9.5	-	0.727	21.0	23.9	2	2
D113721	492,346	7,801,365	7.5	2.0	0.895	34.9	20.1	3	6
D113722	492,147	7,801,366	10.5	2.0	0.815	42.5	31.9	-	5
D113723	492,138	7,801,213	8.5	1.2	0.712	21.5	18.2	3	2
D113724	492,151	7,801,266	8.8	1.9	0.740	36.8	30.6	-	1
D113725	492,150	7,801,165	10.9	0.9	0.825	24.4	21.8	2	4
D113727	492,147	7,801,116	7.6	1.8	0.540	48.5	39.9	-	1
D113728	492,139	7,801,076	9.6	1.3	0.884	28.2	25.2	3	2
D113729	492,147	7,801,027	8.5	1.8	0.794	31.2	22.8	-	2
D113731	492,144	7,800,968	10.0	0.9	0.754	31.3	24.3	2	1
D113732	492,153	7,800,919	8.2	1.4	0.541	47.3	28.5	2	-
D113733	492,152	7,800,867	10.0	2.6	0.846	24.8	21.8	-	1
D113734	492,152	7,800,823	11.0	1.1	0.679	27.6	24.6	2	4
D113735	492,157	7,800,758	9.7	3.0	0.636	26.6	23.3	2	-
D113/36	492,109	7,000,717	8.0	2.7	0.570	25.5	29.1	3	2
D113/3/	492,936	7,800,623	8.7	0.5	0.569	23.7	20.9	2	3
D113/38	492,948	7,000,073	0.1 C E	1.2	0.532	23.7	23.0	3	1
D113/39	492,936	7,800,724	0.5	0.8	0.573	18.8	18.5	-	3
D113/40	492,943	7,000,769	1.2	2.4	0.515	21.0	19.1	2	2
D113/41	492,931	7,800,826	ö.1	2.5	0.530	20.4	22.0	3	-
D113/42	492,944	7,000,004	7.0	2.3	0.522	20.5	18.2	2	-
D113/43	492,907	7 800 050	1.0	1.0	0.407	19.7	21.3	-	-
D113/44	492,933	7 201 004	0.2	1.0	0.023	20.0	22.4	2	2
D113745	492,938	7,801,024	1.2	2.0	0.402	20.5	20.4	2	4

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D113746	492,941	7,801,125	7.7	2.0	0.528	22.6	21.2	1	1
D113747	492,934	7,801,175	6.9	1.9	0.513	20.1	19.6	-	-
D113748	492,946	7,801,271	8.2	-	0.671	27.0	30.7	-	1
D113749	492,937	7,801,315	7.1	1.5	0.589	24.7	21.3	-	1
D113751	492,947	7,801,369	9.2	1.2	0.537	27.8	22.6	2	2
D113752	493,134	7,801,379	8.1	0.8	0.437	24.6	24.8	1	2
D113753	493,136	7,801,324	7.9	0.8	0.565	21.2	18.3	3	-
D113754	493,159	7,801,276	8.6	2.1	0.651	25.1	26.3	1	3
D113755	493,141	7,801,222	9.3	1.4	0.569	24.4	20.3	1	2
D113756	493,138	7,801,174	10.2	2.8	0.612	24.6	26.3	1	-
D113757	493,131	7,801,112	9.7	1.6	0.534	21.9	20.7	-	-
D113758	493,130	7,801,072	7.4	1.1	0.546	22.2	15.4	2	3
D113759	493,134	7,800,970	9.2	1.6	0.563	22.1	17.8	2	-
D113761	493,140	7,800,918	10.3	2.3	0.585	25.4	21.9	1	3
D113762	493,147	7,800,861	11.3	2.1	0.688	26.8	24.0	3	2
D113763	493,141	7,800,812	11.8	1.8	0.782	25.5	23.3	2	-
D113764	493,135	7,800,761	11.2	1.4	0.607	36.9	29.8	2	3
D113765	493,143	7,800,720	8.8	1.2	0.680	29.1	26.0	3	2
D113766	493,134	7,800,680	9.3	1.1	0.624	27.5	27.5	3	-
D113767	493,128	7,800,616	9.0	1.2	0.715	23.1	25.3	2	3
D113785	493,932	7,780,192	9.3	1.0	0.614	16.0	13.3	1	2
D113786	493,888	7,780,193	11.0	1.8	0.575	22.4	21.3	3	5
D113787	493,834	7,780,192	8.6	2.0	0.539	20.5	18.0	-	3
D113788	493,787	7,780,189	9.2	2.1	0.604	19.3	16.9	1	3
D113789	493,740	7,780,197	12.2	2.1	0.627	25.3	32.2	2	5
D113791	493,686	7,780,192	9.3	1.4	0.545	22.1	22.2	1	-
D113792	493,638	7,780,192	9.7	2.2	0.583	19.5	19.9	-	2
D113793	493,592	7,780,205	10.9	5.1	0.685	21.8	16.4	2	3
D113794	493,536	7,780,192	10.1	3.2	0.536	23.9	25.8	2	-
D113795	493,488	7,780,190	7.7	1.1	0.653	15.9	12.5	2	4
D113796	493,439	7,780,197	8.3	1.6	0.547	20.1	15.1	2	2
D113797	493,387	7,780,200	9.0	1.5	0.546	21.6	19.2	-	2
D113798	493,341	7,780,195	9.1	1.6	0.625	18.4	17.9	2	5
D113799	493,288	7,780,202	6.5	1.6	0.496	17.2	18.7	1	4
D113801	493,235	7,780,196	6.6	0.6	0.386	16.7	12.9	2	1
D113802	493,185	7,780,200	8.4	0.8	0.506	16.6	18.5	2	2
D113803	493,132	7,780,199	7.5	2.0	0.589	17.8	21.3	1	3
D113804	493,087	7,780,197	8.1	2.4	0.450	20.0	20.0	1	6
D113805	493,041	7,780,198	9.7	2.1	0.509	21.0	27.1	-	6
D113806	492,991	7,780,200	7.9	2.6	0.515	20.2	26.4	2	7
D113807	492,936	7,780,188	8.2	2.0	0.455	21.3	25.7	1	2
D113808	492,885	7,780,186	7.0	2.3	0.514	18.0	22.9	2	6
D113809	492,840	7,780,195	6.5	1.8	0.496	17.6	18.5	2	4
D113810	492,788	7,780,200	6.9	0.9	0.460	15.1	14.2	-	4
D113811	492,740	7,780,197	7.2	1.7	0.436	18.7	18.0	1	2
D113812	492,693	7,780,200	7.5	1.5	0.526	19.1	22.4	1	2
D113813	492,637	7,780,198	8.1	2.0	0.486	17.8	19.2	-	7
D113814	492,587	7,780,192	8.1	1.5	0.505	18.5	19.0	-	6
D113815	492,537	7,780,198	7.9	0.9	0.471	18.9	16.0	1	4
D113816	492,488	7,780,196	8.3	0.8	0.540	18.5	22.5	-	3
D113817	492,443	7,780,196	8.0	2.0	0.455	23.3	19.4	1	4
D113818	492,389	7,780,205	7.7	1.0	0.496	17.0	18.2	-	5
D113819	492,341	7,780,198	7.7	0.7	0.618	16.2	17.1	-	6
D113881	491,683	7,778,997	7.4	1.1	0.645	20.9	22.2	-	3
D113882	491,730	7,778,996	9.6	1.5	0.590	26.5	30.2	1	3
D113883	491,786	7,778,994	9.6	1.0	0.561	27.8	28.0	-	3
D113884	491,837	7,779,000	10.3	0.9	0.565	31.5	31.0	2	4
D113885	491,888	7,778,988	9.4	2.4	0.488	29.8	27.8	2	5
D113886	491,932	7,778,994	10.7	1.3	0.596	28.5	31.0	-	4

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D113887	491,985	7,778,997	13.2	1.9	0.513	32.5	31.7	1	2
D113888	492,044	7,779,001	17.9	0.8	0.524	32.4	44.5	1	4
D113889	492,089	7,778,991	23.1	1.4	0.620	43.3	42.0	3	8
D113891	492,138	7,778,992	17.8	1.0	0.609	33.2	38.4	1	5
D113892	492,184	7,778,998	12.8	0.5	0.567	19.9	15.9	-	5
D113893	492,237	7,778,994	8.8	1.6	0.558	21.0	18.5	2	4
D113894	492,285	7,778,994	9.8	1.6	0.589	19.9	19.6	1	5
D113895	492,334	7,778,996	10.5	0.6	0.486	20.5	20.3	-	6
D113896	492,383	7,779,004	10.2	2.2	0.578	20.6	18.2	1	6
D113897	492,433	7,778,993	11.6	0.8	0.667	21.2	22.9	-	6
D113898	492,485	7,778,991	13.3	1.2	0.689	23.9	23.4	2	8
D113927	491,234	7,779,391	7.9	2.5	0.487	17.7	21.0	2	5
D113928	491,185	7,779,392	8.6	2.4	0.502	15.9	20.9	-	6
D113929	491,141	7,779,404	6.9	3.2	0.474	16.8	18.6	2	6
D113931	491,087	7,779,383	6.4	2.0	0.480	14.3	16.5	-	3
D113932	491,043	7,779,406	8.0	2.4	0.486	17.5	22.3	-	8
D113933	490,985	7,779,387	7.7	2.5	0.483	16.8	21.1	-	3
D113934	490,935	7,779,384	7.7	1.4	0.504	18.5	24.0	3	6
D113935	490,893	7,779,401	7.4	1.8	0.467	18.5	24.3	1	7
D113936	490,834	7,779,394	7.4	1.6	0.520	15.6	19.4	1	3
D113937	490,839	7,778,995	8.7	2.6	0.551	16.9	16.3	-	2
D113938	490,885	7,778,995	8.8	1.8	0.557	20.3	24.1	3	5
D113939	490,927	7,779,003	8.5	2.5	0.547	19.4	24.4	-	4
D113940	490,992	7,779,002	6.5	2.0	0.503	18.5	22.1	-	7
D113941	491,030	7,778,994	7.0	3.6	0.516	17.0	15.6	-	5
D113942	491,084	7,778,992	7.8	3.5	0.516	19.4	25.8	2	4
D113943	491,133	7,778,986	6.8	2.6	0.498	17.3	17.6	1	7
D113944	491,177	7,778,994	6.9	2.0	0.502	17.9	20.2	-	4
D113945	491,242	7,778,987	6.7	1.1	0.520	19.1	17.9	2	4
D113946	491,287	7,778,998	7.4	2.0	0.514	18.8	22.0	2	5
D113947	491,335	7,778,987	8.1	1.4	0.574	22.1	25.9	2	3
D113948	491,383	7,778,993	8.9	1.6	0.582	23.1	22.7	1	4
D113949	491,434	7,778,997	8.8	2.1	0.607	22.4	23.1	2	8
D113951	491,490	7,779,004	8.6	2.6	0.591	23.7	22.6	2	5
D113952	491,539	7,778,999	9.8	1.7	0.597	24.6	27.6	2	5
D113953	491,581	7,778,990	8.9	1.4	0.538	23.8	33.2	2	5
D113954	491,630	7,778,995	8.7	1.8	0.594	22.8	23.4	-	6
D113955	490,836	7,779,794	8.3	2.1	0.541	16.4	22.3	1	7
D113956	490,879	7,779,785	8.0	0.9	0.492	17.6	23.0	-	8
D113957	490,929	7,779,788	7.8	0.9	0.492	16.0	21.0	-	6
D113958	490,985	7,779,793	7.3	0.9	0.534	19.2	19.8	-	3
D113959	491,043	7,779,789	8.9	2.7	0.530	21.9	27.7	4	6
D113961	491,084	7,779,792	8.3	3.5	0.551	19.0	21.8	2	4
D113962	491,132	7,779,796	8.0	2.0	0.553	17.9	16.4	-	3
D113963	491,184	7,779,788	7.2	1.8	0.500	18.3	19.6	2	5
D113964	491,235	7,779,796	8.6	1.0	0.498	17.1	19.9	3	7

Note: a "-" symbol denotes below detection limit. Detection limits are: As 0.5ppm, Au 0.5ppb, Bi 0.002ppm, Cu 0.1ppm, Ni 0.2ppm, Pt 1ppb, Pd 1ppb

_

ABOUT BLACK CAT SYNDICATE (ASX: BC8)

Key pillars are in place for Black Cat to become a multi operation gold producer at its three 100% owned operations. The three operations are:

Paulsens Gold Operation: Paulsens is located 180km west of Paraburdoo in WA. Paulsens consists of an underground mine, 450ktpa processing facility, 128 person camp, numerous potential open pits and other related infrastructure. The operation is currently on care and maintenance, has a Resource of 4.4Mt @ 3.9g/t Au for 549koz and significant exploration and growth potential.

Coyote Gold Operation: Coyote is located in Northern Australia, ~20km on the WA side of the WA/NT border, on the Tanami Highway. There is a well-maintained airstrip on site that is widely used by government and private enterprises. Coyote consists of an open pit and an underground mine, 300ktpa processing facility, +180 person camp and other related infrastructure. The operation is currently on care and maintenance and has a Resource of 3.7Mt @ 5.5g/t Au for 645koz with numerous high-grade targets in the surrounding area.

Kal East Gold Project: comprises ~1,015km² of highly prospective ground to the east of the world class mining centre of Kalgoorlie, WA. Kal East contains a Resource of 18.8Mt @ 2.1g/t Au for 1,294koz, including a preliminary JORC 2012 Reserve of 3.7Mt @ 2.0 g/t Au for 243koz.

Black Cat plans to construct a central processing facility near the Majestic deposit, ~50km east of Kalgoorlie. The 800ktpa processing facility will be a traditional carbon-in-leach gold processing facility which is ideally suited to Black Cat's Resources as well as to third party free milling ores located around Kalgoorlie.

APPENDIX A - JORC 2012 GOLD RESOURCE TABLE - BLACK CAT (100% OWNED)

Mining Centre		Meas	ured Re	source	Indic	ated Res	ource	Inferred Resource Total Resource				e	
		Tonnes ('000)	Grade (g/t Au)	Metal ('000 oz)	Tonnes ('000)	Grade (g/t Au)	Metal ('000 oz)	Tonnes ('000)	Grade (g/t Au)	Metal ('000 oz)	Tonnes ('000)	Grade (g/t Au)	Metal ('000 oz)
Kal East													
	Open Pit	-	-	-	1,000	2.7	86	1,380	1.8	79	2,380	2.1	164
Bulong	Underground	-	-	-	230	4.6	34	937	3.5	107	1,167	3.8	141
	Sub Total	-	-	-	1,230	3.0	120	2,316	2.5	185	3,546	2.7	305
_	Open Pit	13	3.2	1	7,198	1.8	407	6,044	1.5	291	13,253	1.6	699
Mt Monger	Underground	-	-	-	1,178	4.5	169	710	4.6	104	1,888	4.5	274
	Sub Total	-	-	-	8,375	2.1	576	6,754	1.8	395	15,142	2.0	972
Rowes Find	Open Pit	-	-	-	-	-	-	148	3.6	17	148	3.6	17
Kal East Resource	•	13	3.2	1	9,605	2.3	696	9,219	2.0	597	18,836	2.1	1,294

Coyote Gold Operation

Coyote Resource)	-	-	-	1,818	5.3	307	1,845	5.7	339	3,664	5.5	645
Stockpiles		-	-	-	375	1.4	17	-	-	-	375	1.4	17
	Sub Total	-	-	-	594	2.8	54	1,126	4.0	145	1,721	3.6	198
Bald Hill	Underground	-	-	-	34	2.7	3	513	5.0	82	547	4.8	84
	Open Pit	-	-	-	560	2.8	51	613	3.2	63	1,174	3.0	114
	Sub Total	-	-	-	849	8.7	236	719	8.4	194	1,568	8.5	430
Coyote Central	Underground	-	-	-	240	23.4	181	516	10.5	175	757	14.6	356
	Open Pit	-	-	-	608	2.8	55	203	3.0	19	811	2.9	75

Paulsens Gold Operation

TOTAL Resour	rce	183	9.7	57	12,442	3.2	1,280	14,164	2.5	1,152	26,789	2.9	2,488
Paulsens Resou	rce	170	10.2	56	1,019	8.4	277	3,100	2.2	216	4,289	4.0	548
Electric Dingo	Open Pit	-	-	-	98	1.6	5	444	1.2	17	542	1.3	22
Northern Anticline	Open Pit	-	-	-	-	-	-	523	1.4	24	523	1.4	24
Belvedere	Underground	-	-	-	95	5.9	18	44	8.3	12	139	6.6	30
	Sub Total	-	-	-	-	-	-	1,741	1.2	66	1,741	1.2	66
Mt Clement	Underground	-	-	-	-	-	-	492	0.3	5	492	0.3	5
	Open Pit	-	-	-	-	-	-	1,249	1.5	61	1,249	1.5	61
	Sub Total	170	10.2	56	827	9.6	254	348	8.6	97	1,345	9.4	407
Paulsens	Stockpile	11	1.6	1	-	-	-	-	-	-	11	1.6	1
	Underground	159	10.8	55	827	9.6	254	348	8.6	97	1,334	9.5	406

Notes on Resources:

The preceding statements of Mineral Resources conforms to the 'Australasian Code for Reporting of Exploration Results Mineral Resources and Ore 1. Reserves (JORC Code) 2012 Edition'.

2 All tonnages reported are dry metric tonnes.

Data is rounded to thousands of tonnes and thousands of ounces gold. Discrepancies in totals may occur due to rounding. 3

Resources have been reported as both open pit and underground with varying cut-offs based off several factors discussed in the corresponding Table 4. 1 which can be found with the original ASX announcements for each Resource.

5 Resources are reported inclusive of any Reserves.

Paulsens Inferred Resource includes Mt Clement Eastern Zone Au of 7koz @ 0.3g/t Au accounting for lower grades reported. 6.

The announcements containing the Table 1 Checklists of Assessment and Reporting Criteria relating for the 2012 JORC compliant Resources are:

Kal East Gold Project

Boundary - Black Cat ASX announcement on 9 October 2020 "Strong Resource Growth Continues including 53% Increase at Fingals Fortune"

- Trump Black Cat ASX announcement on 9 October 2020 "Strong Resource Growth Continues including 53% Increase at Fingals Fortune"
- Myhree Black Cat ASX announcement on 9 October 2020 "Strong Resource Growth Continues including 53% Increase at Fingals Fortune"
- Strathfield Black Cat ASX announcement on 31 March 2020 "Bulong Resource Jumps by 21% to 294.000 oz"
- Majestic Black Cat ASX announcement on 25 January 2022 "Majestic Resource Growth and Works Approval Granted"
- Sovereign Black Cat ASX announcement on 11 March 2021 "1 Million Oz in Resource & New Gold Targets"
- Imperial -- Black Cat ASX announcement on 11 March 2021 "1 Million Oz in Resource & New Gold Targets"
- Jones Find Black Cat ASX announcement 04 March 2022 "Resource Growth Continues at Jones Find"
- Crown Black Cat ASX announcement on 02 September 2021 "Maiden Resources Grow Kal East to 1.2Moz"
- Fingals Fortune Black Cat ASX announcement on 23 November 2021 "Upgraded Resource Delivers More Gold at Fingals Fortune"
- Fingals East Black Cat ASX announcement on 31 May 2021 "Strong Resource Growth Continues at Fingals".
- Trojan Black Cat ASX announcement on 7 October 2020 "Black Cat Acquisition adds 115,000oz to the Fingals Gold Project".
- Queen Margaret Black Cat ASX announcement on 18 February 2019 "Robust Maiden Mineral Resource Estimate at Bulong"
- Melbourne United Black Cat ASX announcement on 18 February 2019 "Robust Maiden Mineral Resource Estimate at Bulong"
- Anomaly 38 Black Cat ASX announcement on 31 March 2020 "Bulong Resource Jumps by 21% to 294,000 oz"
- Wombola Dam Black Cat ASX announcement on 28 May 2020 "Significant Increase in Resources Strategic Transaction with Silver Lake"
- Hammer and Tap Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources"
- Rowe's Find Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources"

Coyote Gold Operation

- Coyote OP&UG Black Cat ASX announcement on 16 January 2022 "Coyote Underground Resource increases to 356koz @ 14.6g/t Au One of the highest-grade deposits in Australia'
- Sandpiper OP&UG Black Cat ASX announcement on 25 May 2022 "Coyote & Paulsens High-Grade JORC Resources Confirmed"
- Kookaburra OP Black Cat ASX announcement on 25 May 2022 "Covote & Paulsens High-Grade JORC Resources Confirmed"
- Pebbles OP Black Cat ASX announcement on 25 May 2022 "Coyote & Paulsens High-Grade JORC Resources Confirmed"
- Stockpiles SP (Coyote) Black Cat ASX announcement on 25 May 2022 "Coyote & Paulsens High-Grade JORC Resources Confirmed" Paulsens Gold Operation

Paulsens UG – Black Cat ASX announcement on 31 October 2023 "24% Resource Increase, Paulsens Underground - 406koz @ 9.5g/t Au"

- Paulsens SP Black Cat ASX announcement on 19 April 2022 "Funded Acquisition of Covote & Paulsens Gold Operations Supporting Documents"
- Belvedere UG Black Cat ASX announcement on 21 November 2023 "Enhanced Restart Plan for Paulsens"
- Mt Clement -- Black Cat ASX announcement on 24 November 2022 "High-Grade Au-Cu-Sb-Ag-Pb Resource at Paulsens"
- Merlin -- Black Cat ASX announcement on 25 May 2022 "Coyote & Paulsens High-Grade JORC Resources Confirmed"
- Electric Dingo Black Cat ASX announcement on 25 May 2022 "Coyote & Paulsens High-Grade JORC Resources Confirmed

APPENDIX B - JORC 2012 POLYMETALLIC RESOURCES - BLACK CAT (100% OWNED)

Resour		Tonnes			Grade				С	ontained N	letal	
Deposit	Category	(,000 t)	Au (g/t)	Cu (%)	Sb (%)	Ag (g/t)	Pb (%)	Au (koz)	Cu (kt)	Sb (kt)	Ag (koz)	Pb (kt)
Western	Inferred	415	-	0.4	0.2	76.9	-	*	1.6	0.7	1,026	-
western	Total	415	-	0.4	0.2	76.9	-	*	1.6	0.7	1,026	-
Control	Inferred	532	-	-	-	-	-	*	-	-	-	-
Central	Total	532	-	-	-	-	-	*	-	-	-	-
Fastern	Inferred	794	-	-	1.7	17.0	2.4	*	-	13.2	434	18.7
Eastern	Total	794	-	-	1.7	17.0	2.4	*	-	13.2	434	18.7
Total		1,741	-	-	-	-	-	*	1.6	13.9	1,460	18.7

Notes on Resources:

The preceding statements of Mineral Resources conforms to the 'Australasian Code for Reporting of Exploration Results Mineral Resources and Ore Reserves (JORC Code) 2012 Edition'. 1.

All tonnages reported are dry metric tonnes.

Data is rounded to thousands of tonnes and thousands of ounces/tonnes for copper, antimony, silver, and lead. Discrepancies in totals may occur due 3. to rounding.

- Resources have been reported as both open pit and underground with varying cut-offs based off several factors discussed in the corresponding Table 4. 1 which can be found with the original ASX announcements for each Resource
- 5. Resources are reported inclusive of any Reserves.

Gold is reported in the previous table for Mt Clement, and so is not reported here. A total of 66koz of gold is contained within the Mt Clement Resource. 6.

The announcements containing the Table 1 Checklists of Assessment and Reporting Criteria relating for the 2012 JORC compliant Reserves are:

Paulsens Gold Operation

Mt Clement - Black Cat ASX announcement on 24 November 2022 "High-Grade Au-Cu-Sb-Ag-Pb Resource at Paulsens"

APPENDIX C - JORC 2012 GOLD RESERVE TABLE - BLACK CAT (100% OWNED)

	P	Proven Reserve			obable Rese	rve		Total Reserv	'e
	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s oz)
Kal East				•	•				
Open Pit	-	-	-	3,288	1.8	193	3,288	1.8	193
Underground	-	-	-	437	3.6	50	437	3.6	50
Kal East Reserve	-	-	-	3,725	2.0	243	3,725	2.0	243
Paulsens Gold Operation	<u>on</u>								
Underground	93	4.5	14	537	4.3	74	631	4.3	87
Paulsens Reserve	93	4.5	14	537	4.3	74	631	4.3	87
TOTAL Reserves	93	4.5	14	4.262	2.3	317	4.356	2.4	330

Notes on Reserve:

The preceding statements of Mineral Reserves conforms to the 'Australasian Code for Reporting of Exploration Results Mineral Resources and Ore 1. Reserves (JORC Code) 2012 Edition'.

All tonnages reported are dry metric tonnes

3 Data is rounded to thousands of tonnes and thousands of ounces gold. Discrepancies in totals may occur due to rounding.

4. Cut-off Grade

Open Pit - The Ore Reserves are based upon an internal cut-off grade greater than or equal to the break-even cut-off grade. 0

Underground - The Ore Reserves are based upon an internal cut-off grade greater than to equal to the break-even cut-off grade.
 The commodity price used for the Revenue calculations for Kal East was AUD \$2,300 per ounce.

5.

The commodity price used for the Revenue calculations for Paulsens was AUD \$2,500 per ounce. 6.

The Ore Reserves are based upon a State Royalty of 2.5% and a refining charge of 0.2%

The announcements containing the Table 1 Checklists of Assessment and Reporting Criteria relating for the 2012 JORC compliant Reserves are: Kal East Gold Project

Black Cat ASX announcement on 03 June 2022 "Robust Base Case Production Plan of 302koz for Kal East"

Paulsens Gold Operation

Black Cat ASX announcement on 10 July 2023 "Robust Restart Plan for Paulsens"

APPENDIX D –JORC TABLE 1

Section 1: Sampling Te	chniques and Data					
Criteria	JORC Code Explanation	Commentary				
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised	UFF Termite Mound Samples:				
	industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Approximate sample locations were chosen in advance to cover interpreted geological features of interest and final locations were chosen in field based on the proximity of appropriate termite mounds. Samples were collected using hand tools from the termite mounds and ~200g were collected from the mound. Samples were collected in standard soil sample sachets and placed in pre-numbered calico bags and the locations were recorded using a hand-held GPS.				
		Spinifex Biogeochemical Samples: ~250-300g of spinifex needles were collected from spinifex plants in close proximity to the termite mound sample locations. The species of spinifex was recorded at time of collection for future data analysis. Samples were collected in pre-numbered calico bags. Samling was conducted using a hand-held edge trimmer and needles were collected from the clippings.				
Sampling techniques		All geochemical samples were submitted to a commercial laboratory for ICP-MS and ICP-OES analysis.				
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Samples were collected on pre-determined grids that provided broad areas over interpreted features of geological interest. Sample grids are broad enough to cover a range of interpretations for where the feature of interest was specifically located and sample spacing is considered representative for the early-stage exploration activities reported herein.				
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling	~200g termite mound samples were collected in the field. Samples were not sieved as the material collected was biologically-sieved by the termites – i.e. the termites selectively collected the fine-fraction from the underlying strata. The <2um fraction was separated from the sample at the commercial laboratory, digested in aqua-regia under high pressure and temperature in a microwave apparatus and analysed using ICP-MS and ICP-OES techniques.				
	problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	~250-300g spinifex needle samples were collected from sample locations. Complete sample decomposition was achieved at the laboratory using a microwave digestion apparatus at high temperature and pressure. Samples were analysed using a commercial ICP-MS and ICP-OES technique.				
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	No drill results are reported				
	Method of recording and assessing core and chip sample recoveries and results assessed.	No drill results are reported				
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	No drill results are reported				
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No drill results are reported				
	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	No drill results are reported				
Logging	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	No drill results are reported				
	The total length and percentage of the relevant intersections logged.	No drill results are reported				
	If core, whether cut or sawn and whether quarter, half or all core taken.	No drill results are reported				
Sub-sampling techniques and sample	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	No drill results are reported				
preparation	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation was undertaken at a commercial laboratory.				

JORC Code Explanation	Commentary						
	UFF analysis (termite mound samples): the <2um fraction was separated from the sample using water as a dispersant. The clay fraction was digested in aqua regia under high pressure and temperature using a microwave apparatus as a total digest method. Samples were then analysed using ICP-MS and ICP-OES methods.						
	Biogeochemical samples: complete sample decomposition was achieved under high temperature and pressure using a microwave digestion technique and the samples were analysed using conventional ICP-MS and ICP-PES methods.						
Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Laboratory and blind standard UFF analysis, company stand	is were used as part of the QAQC process, and resulards underwent the same sample prep as submitted	ults compared with standard values. For d samples.				
Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second half sampling.	Field duplicates were not subr	mitted as part of this study.					
Whether sample sizes are appropriate to the grain size of the material being sampled.	250-300g samples of spinifex needles						
The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Aqua regia digestion is consid OES methods.	standard commercial ICP-MS and ICP-					
For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.		2005 by Terrex Seismic Pty Ltd under contract to G 40 channel ARAM 24-bit seismic recording system w and receiver parameters are as follows: 3x IVI Hemi-60 vibrators 3 x 12s Varisweeps 8 – 64Hz, 12-90 Hz, 10-76 Hz 15m 80m 40m 12 10 Hz phones in line with 3.33m spacing 240 active undertaken by Geoscience Australia as described ir aminut 2D Seismic Survey, WA, NT, 2005 Stacked and GA-T3, and 05GA-T4. Geoscience Australia, Canbe I of trimming the data to the area of interest and dep a series of TIFF plots were generated. A series of se is applied on seismic data to create a more consiste s To generate a pseudorelief image, the energy attr	eoscience Australia. The seismic vith 10 Hz geophones and three 60,000lb n Jones, J.E.A, Johnstone, D.W., Barton, Migrated Seismic data and Images for rra. th converted using the Geoscience eismic attributes were calculated nt image for easier interpretation of ibute is first calculated and then a Hilbert				
Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Standards were submitted for used were low value standard standards data. Blanks and fi	analysis at a frequency of 1:50 and results compare ls, similar to what was expected from the samples. I ield duplicates were not submitted as field checks.	ed with published results. All standards No obvious bias was noted in the				
The verification of significant intersections by either independent or alternative company personnel.	Only raw data is reported, and	d no composite intersections are reported.					
The use of twinned holes.	No drill results are reported						
Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Field data, including location, portable tablet device.	termite mound height and spinifex species was reco	orded using an Excel spreadsheet on a				
Discuss any adjustment to assay data.	Assay data has not been adju	sted					
Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	All sample locations were recorded using a hand-held Garmin GPS with an accuracy of +/-3m						
Specification of the grid system used.	All sample locations are repor	ted using the MGA94Z52 datum					
	Regional topographic control is based on a Lidar survey conducted in 2022 across all Black Cat tenements in the West Tanami.						
	JORC Code Explanation Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used.	JORC Code Explanation Commentary UFF analysis (termite mound The clay fraction was digeste digest method. Samples were Biogeochemical samples: or microwave digestion techniqu Cality control procedures adopted for all sub-sampling stages to maximise expresentivity of samples. UFF analysis, company stand UFF analysis, company stand UFF analysis, company stand collected, including for instance results for field duplicate/second half sampling. Laboratory and blind standars. Whether sample sizes are appropriate to the grain size of the material collected, including for instance results for field duplicate/second half sampling. -200g termite mound sample were collected for analysis. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Aqua regia digestin is consi OES methods. For geophysical tools, spectrometers, handheid XRF instruments, etc. the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Seismic data was collected in Source Type Sweep frequencies Source Type Source Type and the derivation, etc. Seismic data processing was r, Fornin, T. 2005. LT/1 Tan Lines 05GA-T1, 05GA-T2, 05 Re-imagi no23 consisted of a sustania velocity model and a including pseudorelief, which and precision have been established. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. Standards data. Blanks and fi nicluding pseud	JORC Code Explanation Commentary UFF Raysis (mmmit hound samples): the ~2um frotom vass separate from the the heap regis under hisp prossure and temporature digest method. Samples were sidepted for all sub-sampling stages to maximise representative of the in-situ material collected, including for instance results for field duplicate/second haf sampling. Quality control procedures adopted for all sub-sampling stages to maximise representative of the in-situ material collected, including for instance results for field duplicate/second haf sampling. Field duplicates were not submitted as part of the ACO process, and result of the material collected, including for instance results for field duplicate/second haf sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Field duplicates were not submitted to the laboratory. ~? The nature, quality and appropriate to the grain size of the material being sampled. Sessime data was collected for analysis. For geophysical tools, spectrometers, handhed XRF instruments, etc. the parameters is considered partial or total. Sessime data was collected in 2005 by Terex Sesimic Py Lt under contract to C system used consisted of a 240 cative For geophysical tools, spectrometers, handhed XRF instruments, etc. the parameters is considered partial or total. Source spacing in 12 to 12 phones in line with 3.33m spacing in the with 3.33m spacing in the with 3.33m spacing in the week spacing in 12 to 12 phones in direct and tog system V V interval 4 dm. For geophysical tools, spectrometers, handhed XRF instruments, etc. the parameters are spacing in 12 to 12 phones in line with 3.3				

Section 1: Sampling Techniques and Data										
Criteria	JORC Code Explanation	Commentary								
	Data spacing for reporting of Exploration Results.	Surface sample spacing is highly variable.								
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Surface sampling referenced in this release are not used in any Mineral Resource estimation								
-	Whether sample compositing has been applied.	No sample compositing is reported for surface samples								
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Sampling was conducted on a variety of survey grids designed to maximize coverage without consideration of local geology orientation								
structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Sampling was conducted on a variety of survey grids designed to maximize coverage without consideration of local geology orientation								
Sample security	The measures taken to ensure sample security.	Samples were collected by Black Cat personnel and transported to the laboratory using commercial road transport. Samples were transported in sealed bags collected in the field and no tampering was reported by the laboratory.								
Audits or reviews	The results of any audits or reviews of sampling techniques and data.									

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	nmentary				
		following tenements in the project area are 100%	owned by Black Cat Syndicate:			
		80/5039 M80/645				
		30/1737				
		30/1840				
		30/1841				
		30/1483				
	Type, reference name/number, location and ownership including agreements or material	30/3388				
Mineral tenement and land tenure status	title interests, historical sites, wilderness or national park and environmental settings.	30/3389				
		30/559				
		80/560				
		80/561				
		30/3665				
		30/563				
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	enements are in good standing as at the time of re ining licence to operate.	eporting and Black Cat is not aware of any impediments to			
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	ensive surface sampling, exploration drilling, geop at Tanami and Black Cat references legacy data a ase dates back to the 1980s.	hysical surveys and geology mapping has been completed in the s available. Exploration activities in the area of interest in this			
Geology	Deposit type, geological setting and style of mineralisation.	Coyote-Style Mineralisation: Gold mineralisation at Coyote is narrow-vein-hosted within structurally-controlled quartz veins hosted in sub-greenschist facies turbiditic sediments of the Killi Killi and Dead Bullock (Stubbins) Formations. At Coyote, gold occurs as free gold and visible gold nuggets are frequently observed in drill core. Farther north, at Bald Hill, gold is sulphide-hosted and is locally refractory below the BOCO. Gold mineralisation is associated with regional-scale fault zones and associated damage zones. At Coyote Central, gold mineralisation is localised in a regional-scale anticline and at Bald Hill mineralisation is associated with a regional syncline. Mineralisation is believed to be associated with the Proterozoic Granites-Tanami Orogenic event.				

Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)		
Criteria	JORC Code Explanation	Commentary
		Gremlin-Style Mineralisation: Ni-Co mineralisation at Gremlin is hosted in a gabbro intrusion of unknown age. Mineralisation is localised in lenses within the gabbro, possibly reflecting the margins of successive intrusive phases although only two diamond drill holes have historically been completed into this intrusion.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or Reduced Level ("RL") (elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length; and if the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	All sample locations are provide within the body of the announcement.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high-grades) and cut-off grades are usually Material and should be stated.	No average weighting has been applied to surface sampling data
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No average weighting has been applied to surface sampling data
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents have been reported.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Due to extensive post-mineralisation cover at the prospect areas referenced in this report, the dip and strike of the local geology is uncertain. Surface sampling was conducted on several grids to maximize coverage without biasing orientations.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	All reported data is shown on maps within the body of this report.
Balanced reporting	Where comprehensive reporting of all Exploration. Results are not practicable, representative reporting of both low and high-grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All surface samples referenced in the body of this announcement are tabulated and shown on relevant maps in the body of this announcement.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All relevant geological data is discussed in the body of this report.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Black Cat intends to conduct follow-up surface sampling and drilling in the broader West Tanami project area.