

New Regional Geology Model \& Targets - Coyote

Black Cat Syndicate Limited ("Black Cat" or "the Company") is pleased to provide an update on regional exploration activities at the 100\% owned Coyote Gold Operation ("Coyote").

HIGHLIGHTS

- Geophysical re-processing and re-interpretation has been completed, including re-processing of legacy company and government aeromagnetic, airborne EM, gravity, radiometric and seismic data. This work has highlighted and refined additional Coyote-style anticline targets south of Coyote Central and additional potential magmatic Ni-PGE targets near Gremlin. Surface sampling was conducted over five of these targets during this program. Key outcomes include:
- New regional geology model developed,
- Multiple potential Coyote-style Axial Core Zones identified, and
- 5 additional magmatic Ni-PGE targets at Gremlin.
- Surface sampling has been completed at Coyote across several targets, including near-mine gold targets and the magmatic Ni-PGE prospect at Gremlin, $\sim 20 \mathrm{~km}$ south of the processing facility. Sampling included termite mounds and spinifex needles to "see through" thin, post-mineralisation cover sand. Key outcomes include:
- New anomalies confirmed at Coyote Syncline, Lewis Granite and Track Syncline,
- Snork prospect expanded,
- Near surface anomalism identified at Pebbles East, along the Tanami Fault, and
- Ni-PGE mineralisation at Gremlin reinforced.

Figure 1: Termite mound sampling at Coyote.

Black Cat's Managing Director, Gareth Solly, said: "Our new geology model combined with applying low-cost, sampling techniques has identified multiple exciting anomalies. The thin post-mineralisation cover around Coyote has historically been challenging for exploration, relying on RAB or aircore drilling to sample below cover. These new sampling techniques enable us to rapidly test our new geology model in the field. We have let the termites and spinifex bushes do the hard work over large areas and now plan to capitalise on the results of that work."

SNAPSHOT - COYOTE GOLD OPERATION

100\% Controlled by Black Cat

$819 \mathrm{~km}^{2}$ of highly prospective ground, 100% owned.

Background

- Open pit and underground workings to a depth of $\sim 320 \mathrm{~m}$ below surface, which produced a combined $\sim 211 \mathrm{koz} @ 4.9 \mathrm{~g} / \mathrm{t} \mathrm{Au} @$ 95.8\% recovery.
- Current Resource of $645 \mathrm{koz} @ 5.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, including Coyote Central Resource of $430 \mathrm{koz} @ 8.5 \mathrm{~g} / \mathrm{t}$ Au - one of Australia's highest grade gold deposits.
- Care and maintenance since 2013.
- No systematic exploration undertaken for ~ 10 years, prior to Black Cat's purchase.
- The July 2023 Scoping Study ${ }^{1}$ included planned production of 200 koz Au over the first 5 years with an All-in Sustaining Cost ("AISC") of $\$ 1,586 /$ oz.

Only Infrastructure in Place for 200km

- <1km from Tanami Highway.
- 180+ person camp and offices, partially sublet to several other companies.
- Mines and key targets on Mining Leases.
- 300 ktpa processing facility with potential to upgrade.
- Airstrip
- Processing water readily available.

Significant Opportunities at All Stages

- Since completing the Coyote acquisition in June 2022, Black Cat has assessed the opportunities at Coyote based on geology, maturity and risk/reward. The segments defined at Coyote are:
- Coyote Central: mineralisation over $\sim 1,200 \mathrm{~m}$ in strike and down to $\sim 700 \mathrm{~m}$ in depth. Current Resource contains 356 koz @ $14.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and the Coyote Central produced $179 \mathrm{koz} @ 6.0 \mathrm{~g} / \mathrm{t}$ Au historically from underground, open pits and surface paleochannels.
- Coyote West: a 2.5 km long, highly prospective zone of near-surface anomalism in a potential fault offset position from Coyote Central which appears to be plunging to the west. The area lacks systematic testing
- Coyote East: This area hosts numerous near mine opportunities and drilling has largely been ineffective.
- Bald Hill: located 30 km from the processing facility with historical open pits producing $42 \mathrm{koz} @ 2.7 \mathrm{~g} / \mathrm{t}$ Au. Bald Hill remains open and has potential to increase the current open pit Resource of $198 \mathrm{koz} @ 3.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}$.
- Regional: Numerous high priority targets including Coyote Syncline, Road Runner, Penfold and Gremlin (Ni-Co-PGE), Gardner Dome (REE, Au) requiring testing.

Analogous to One of the World's Best Gold Mines, 200km Away

Coyote is within the same structural corridor as Callie (14Moz), with both deposits hosted in anticlines of folded sediments on splays off the Tanami Fault. There are multiple mineralisation styles within the Callie area, while currently only a single mineralisation model has been historically applied and tested at Coyote.

Figure 2: Regional map of the Coyote Gold Operation showing the location of Resources and large-scale fault architecture

New Regional Geology Model \& Targets - Coyote

COYOTE REGIONAL EXPLORATION ACTIVITIES

Geophysical Reprocessing and Regional Model Update

Black Cat has completed a geophysical reprocessing campaign of open file, legacy company and multi-client data, including aeromagnetics, radiometrics, EM and 2D seismic data. An updated 1:20k scale geology interpretation of the Coyote-Gremlin region has been completed, covering the highly prospective Tanami Fault corridor, a known fertile structural corridor that hosts the world-class Callie (14 Moz) deposit $\sim 200 \mathrm{~km}$ along strike to the east. As part of this exercise, the Geoscience Australia seismic line 05GA-T3, that transects the Coyote Central (current Resource 430koz @ 8.5g/t Au) and Bald Hill (current Resource 198koz @ $3.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}$) districts, was re-imaged.

Key outcomes of this geophysical work include:
New Regional Geology Model: The structural architecture of the Coyote Central and Bald Hill districts has been modelled in detail to identify areas for potential Coyote/Callie-style mineralisation and the regional geology interpretation has been updated.

Multiple Potential Coyote-Style Anticlines: the high-grade Coyote Central deposit is hosted in a regional-scale anticline with a low-displacement shear in the fold axis - the Axial Core Zone ${ }^{2}$. The new geology model has highlighted several areas similar to Coyote Central. In particular, a detailed review of the Geoscience Australia 05GA-T3 seismic line has highlighted several blind anticlines with potential low-displacement faults within the Tanami Fault corridor to the southwest of Coyote Central. Two of these blind anticlines correspond with the Snork and Pebbles/Pebbles East prospects, which also have low-level surface geochemical anomalism (Figures 3 and 4). These prospects are now key regional targets.
5 Additional Magmatic Ni-PGE Targets at Gremlin: Gremlin is located $\sim 20 \mathrm{~km}$ southeast of Coyote Central. Aeromagnetic reprocessing has further refined the Gremlin anomaly, which has historically returned anomalous Ni-PGE mineralisation in gabbro ${ }^{3}$. To date, 5 similar aeromagnetic anomalies have been defined which may represent a larger mafic intrusive system prospective for magmatic Ni-PGE mineralisation.

Surface Sampling

Based on the new geology model, 1,940 samples (990 termite mounds, 950 spinifex bushes) were taken over newly identified prospects including Coyote Syncline, Track Syncline, Snork, Pebbles East, Lewis Granite and Gremlin (Figures 4, 5, 6, 7). Surface samples were collected from termite mounds and spinifex bushes and often both sample types were collected from the same location for cross-comparison of the two techniques. This is the first systematic termite mound and spinifex biogeochemical regional survey at Coyote. There have been similar but targeted historical surveys over known mineralisation, including an academic study over Coyote Central in 2008, that returned anomalous Au-As values adjacent to the deposit ${ }^{4}$. This historical work provides an important proof of concept in areas with thin sand cover.
Termite mound sampling is predicated on the idea that the material used to construct the mound is representative of the top several metres of the underlying geology as the termites return material to construct the mound. Biogeochemical sampling is based on the idea that plant roots gather nutrients from the underlying rocks and soil, and certain elements (e.g. As, Bi, S) may be preferentially concentrated in the leaves of the plants. Mature spinifex plant root systems can tap several 10's of metres below surface and may also provide a good sampling medium ${ }^{5}$.
Key outcomes of this geochemical work include:
New Anomalies Confirmed at Coyote Syncline, Lewis Granite, Track Syncline: The Coyote Syncline, Lewis Granite and Track Syncline prospects are in the hangingwall of the Coyote Fault. Several termite mound samples returned $>2 \mathrm{ppb} \mathrm{Au}$, which is of similar tenor to that of historical surface sampling over Coyote Central ${ }^{6}$. The anomalous samples define an $\sim 10 \mathrm{~km}$ long linear trend, sub-parallel, to the Coyote Fault and are encouraging given that conventional historical soil sampling did not identify anomalism in these areas.
Snork Footprint Expanded: Snork is located south of Coyote Central and is in the immediate footwall of a splay off the Coyote Fault. Historical conventional soil sampling identified several narrow NW-SE trending $>1 \mathrm{ppb}$ Au anomalies, and termite mound sampling to the south expanded the footprint of this anomalism.
Pebbles Extended Along Tanami Fault to the East: Pebbles East is located to the east of the outcropping Pebbles prospect, which is defined by a $\sim 3 \mathrm{~km} \times 1 \mathrm{~km}$ linear $>2 \mathrm{ppb}$ Au in soil anomaly corresponding with outcropping mineralised quartz veins. Pebbles sits in the immediate footwall of the Tanami Fault. Pebbles East is located along strike from Pebbles, where the Tanami Fault goes under post-mineralisation fluvial sediments. Termite sample results identified a broad $\sim 2 \mathrm{~km} \times 1 \mathrm{~km}$ zone of $>3 \mathrm{ppb}$ Au anomalism along the Tanami Fault and, significantly, demonstrates the potential for this method to see through thin post-mineralisation cover.
Gremlin Ni-PGE Targets Reinforced: Termite mound sample results returned anomalous Ni above, and in close proximity to, the interpreted mafic intrusions at Gremlin. Historical, surface soil sampling also returned anomalous Ni results at Gremlin, which demonstrates the potential for this technique to apply to base metals mineralisation in addition to gold.

Further Work

As a result of the success of this work, similar regional work is planned over an expanded area. Gold discovery is Black Cat's priority and drill planning over several targets including Snork and Pebbles East has commenced.

In addition, expressions of interest have been received in relation to Gremlin and these are being considered.

[^0]

Figure 3:Simplified interpretive bedrock geology map of the Coyote region overlain on re-processed aeromagnetic imagery (RTP1VD). Prospects referenced in this announcement are shown as is the extent of Black Cat's geophysical reprocessing.

New Regional Geology Model \& Targets - Coyote

Figure 4: Reprocessed seismic line 05GA-T03 showing only areas covered by Coyote and Bald Hill. Interpreted structures and marker horizons are shown for reference, as are the locations of prospects along the seismic line where mineralisation has been identified.

Figure 5: Map showing the termite mound sample locations coloured by $\mathrm{Au}(p p b)$ for the Coyote district. Also shown are contours of historical soil sample Au results for reference. The geology interpretation is coloured as per Figure 3.

New Regional Geology Model \& Targets - Coyote

Figure 6: Map of Gremlin showing the location of termite mound samples coloured by Ni grade and historical drill collars coloured by max Ni. The geology interpretation is coloured as per Figure 3.

Figure 7: Map of Gremlin showing the location of termite mound samples coloured by Pt+Pd grade and historical drill collars coloured by max Ni. The geology interpretation is coloured as per Figure 3.

PLANNED ACTIVITIES

Jan 2024:	Quarterly Report
Feb 2024:	Regional RC drilling results
13-15 Feb 2024:	RIU Explorers Conference, Fremantle
28 Feb 2024:	Funding package end date
Mar 2024:	Half Year Financial Report
Mar 2024:	Funding package completion/drawdown date

For further information, please contact:
Gareth Solly
Managing Director
+61458 007713
admin@bc8.com.au

This announcement has been approved for release by the Board of Black Cat Syndicate Limited.

COMPETENT PERSON'S STATEMENT

The information in this announcement that relates to geology, and planning was compiled by Dr. Wesley Groome, who is a Member of the AIG and an employee, shareholder and option holder of the Company. Dr. Groome has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr. Groome consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.
The Company confirms that it is not aware of any new information or data that materially affects the information in the original reports, and that the form and context in which the Competent Person's findings are presented have not been materially modified from the original reports.

Where the Company refers to the exploration results, Mineral Resources, and Reserves in this report (referencing previous releases made to the ASX), it confirms that it is not aware of any new information or data that materially affects the information included in that announcement and all material assumptions and technical parameters underpinning the Mineral Resource and Reserve estimates with that announcement continue to apply and have not materially changed.

New Regional Geology Model \& Targets - Coyote
TABLE 1: TERMITE MOUND ULTRAFINE FRACTION SAMPLE RESULTS

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	$\mathrm{Cu}(\mathrm{ppm})$	Ni(ppm)	Pt(ppb)	$\mathrm{Pd}(\mathrm{ppb})$
D111516	483,326	7,801,947	5.9	1.6	0.497	12.0	11.7	2	2
D111517	483,334	7,801,991	4.7	1.4	0.398	12.4	11.8	-	-
D111518	483,335	7,802,041	12.1	2.3	0.575	16.4	15.5	1	5
D111519	483,333	7,802,084	10.4	1.8	0.512	17.9	19.3	-	4
D111520	483,335	7,802,141	6.0	1.1	0.388	18.4	15.3	1	-
D111521	483,337	7,802,192	7.6	1.2	0.435	37.3	30.9	1	2
D111522	483,347	7,802,240	7.9	1.4	0.449	44.7	29.3	-	-
D111523	483,335	7,802,295	7.3	1.5	0.428	28.4	25.2	2	2
D111524	483,337	7,802,336	8.2	1.0	0.604	28.3	26.9	1	5
D111525	483,347	7,802,392	7.4	0.7	0.495	25.1	22.4	2	3
D111527	483,335	7,802,437	7.4	0.8	0.514	25.8	23.1	-	-
D111528	483,336	7,802,490	7.2	0.9	0.580	22.6	19.7	-	3
D111529	483,330	7,802,540	6.7	2.4	0.508	21.0	19.5	2	2
D111531	483,329	7,802,592	7.6	1.5	0.514	22.6	22.0	-	3
D111532	483,348	7,802,639	8.4	1.3	0.501	26.7	23.5	3	3
D111533	483,334	7,802,688	7.2	0.8	0.527	21.5	20.5	-	2
D111534	483,339	7,802,753	6.6	1.8	0.481	21.6	18.7	-	-
D111535	483,340	7,802,791	6.5	0.9	0.387	30.1	25.7	1	4
D111536	483,338	7,802,837	6.5	1.8	0.438	23.5	27.2	-	3
D111537	483,341	7,802,892	6.9	1.3	0.449	27.1	31.0	2	3
D111538	483,340	7,802,942	6.6	1.4	0.465	23.4	20.9	-	4
D111539	483,366	7,802,985	5.8	1.8	0.409	20.7	22.4	2	6
D111540	483,322	7,803,039	5.0	1.7	0.394	23.8	22.2	3	5
D111541	483,343	7,803,101	4.8	2.4	0.427	19.0	21.6	1	1
D111542	483,337	7,803,134	5.0	2.8	0.409	20.4	24.7	2	4
D111544	483,331	7,803,228	6.6	2.1	0.505	24.5	28.1	2	7
D111545	483,351	7,803,276	5.6	2.2	0.481	24.2	24.1	-	4
D111546	483,348	7,803,340	6.4	2.2	0.483	24.8	29.9	-	3
D111547	483,741	7,803,331	5.0	2.3	0.446	21.1	17.3	1	6
D111548	483,331	7,803,181	4.3	2.8	0.393	26.4	36.5	2	4
D111549	483,738	7,803,294	5.7	1.4	0.424	26.9	21.1	2	4
D111551	483,738	7,803,229	6.4	1.2	0.347	24.8	27.8	1	2
D111552	483,763	7,803,196	6.5	0.7	0.360	22.0	25.9	2	-
D111553	483,736	7,803,128	6.0	1.6	0.343	23.5	26.6	2	4
D111554	483,752	7,803,082	6.0	0.9	0.399	23.5	27.4	-	3
D111555	483,744	7,803,039	6.5	-	0.345	25.9	27.6	2	2
D111556	483,742	7,802,984	7.3	-	0.355	26.2	35.3	-	4
D111557	483,752	7,802,946	6.3	-	0.352	25.3	24.6	-	-
D111558	483,738	7,802,882	6.1	1.6	0.335	25.1	26.7	2	-
D111559	483,738	7,802,833	7.4	1.2	0.386	22.8	28.7	3	3
D111561	483,737	7,802,775	8.8	1.9	0.420	18.8	29.0	-	2
D111562	483,743	7,802,735	7.8	1.0	0.387	24.3	29.1	-	2
D111563	483,729	7,802,691	7.2	1.5	0.408	23.2	29.0	2	2
D111564	483,735	7,802,633	7.4	0.8	0.432	29.5	31.4	-	4
D111565	483,738	7,802,586	6.6	0.8	0.407	21.5	25.2	-	7
D111566	483,734	7,802,537	6.1	1.1	0.411	22.6	20.6	1	1
D111567	483,739	7,802,489	8.5	0.8	0.435	24.9	29.6	-	6
D111568	483,730	7,802,435	8.1	0.9	0.450	22.3	25.0	-	4
D111569	483,744	7,802,382	6.6	-	0.494	22.0	25.9	-	3
D111570	483,743	7,802,329	7.0	-	0.463	21.1	24.3	-	3
D111571	483,690	7,802,242	7.8	1.2	0.452	20.9	21.9	-	2
D111572	483,732	7,802,183	7.0	1.0	0.458	19.5	20.1	2	2
D111573	483,736	7,802,135	7.1	0.8	0.459	19.9	17.7	-	-
D111574	483,717	7,802,099	9.0	-	0.513	20.4	19.9	-	2
D111575	483,736	7,802,025	7.4	1.3	0.466	22.6	22.3	-	-
D111577	483,731	7,801,985	8.3	-	0.463	23.1	24.4	1	5
D111578	483,743	7,801,930	9.0	0.7	0.533	23.4	24.0	1	2

New Regional Geology Model \& Targets - Coyote

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	$\mathrm{Pd}(\mathrm{ppb})$
D111579	484,126	7,801,935	9.5	1.2	0.519	24.2	24.5	-	5
D111580	484,124	7,802,001	9.2	0.7	0.529	22.0	23.5	2	3
D111581	484,140	7,802,042	9.2	0.7	0.569	25.1	23.0	2	6
D111582	484,138	7,802,089	9.2	-	0.538	24.9	28.7	2	5
D111583	484,126	7,802,142	9.8	0.9	0.507	21.9	24.6	2	4
D111584	484,148	7,802,180	8.8	1.4	0.559	25.5	30.1	2	3
D111585	484,129	7,802,226	8.2	2.1	0.533	21.2	24.8	1	5
D111586	484,145	7,802,294	6.8	1.9	0.513	20.9	20.7	2	5
D111587	484,136	7,802,333	6.8	0.8	0.559	18.7	15.0	2	5
D111588	484,143	7,802,385	8.0	1.8	0.457	20.9	26.2	2	3
D111589	484,138	7,802,428	7.6	1.3	0.462	20.7	19.8	2	4
D111591	484,130	7,802,490	6.8	2.1	0.424	24.7	24.3	1	3
D111592	484,143	7,802,533	7.4	-	0.393	25.7	33.4	-	6
D111593	484,141	7,802,598	6.6	0.7	0.368	23.5	25.9	2	-
D111594	484,130	7,802,639	6.7	1.2	0.425	23.0	27.3	2	-
D111595	484,147	7,802,679	6.6	1.3	0.388	22.8	28.5	3	1
D111596	484,134	7,802,737	6.9	1.0	0.429	24.0	28.2	2	-
D111597	484,133	7,802,783	6.7	1.8	0.464	24.6	22.5	1	5
D111598	484,149	7,802,836	6.2	1.4	0.394	23.8	32.9	-	6
D111601	484,147	7,802,887	6.4	1.7	0.427	21.8	23.6	3	-
D111602	484,139	7,802,931	6.9	0.7	0.398	24.0	30.8	-	4
D111603	484,134	7,802,983	7.0	-	0.434	22.4	26.7	2	4
D111604	484,144	7,803,031	7.0	1.1	0.431	21.3	29.4	2	5
D111605	484,151	7,803,084	6.9	1.0	0.447	25.9	30.3	-	4
D111606	484,149	7,803,136	6.5	2.9	0.510	18.6	26.7	2	4
D111607	484,147	7,803,181	6.2	2.7	0.471	20.8	30.1	2	2
D111608	484,152	7,803,236	6.0	1.8	0.421	20.0	29.6	-	3
D111609	484,162	7,803,282	5.8	2.2	0.446	19.8	22.7	-	1
D111610	484,141	7,803,329	5.9	1.3	0.476	18.9	21.9	1	-
D111611	486,345	7,802,464	5.4	1.1	0.490	19.8	15.1	-	1
D111612	486,336	7,802,522	5.0	1.8	0.490	15.4	12.8	4	2
D111613	486,334	7,802,574	6.6	2.9	0.463	22.4	23.1	2	-
D111614	486,344	7,802,622	5.1	1.1	0.466	20.0	17.8	3	-
D111615	486,328	7,802,662	6.5	1.9	0.508	18.9	17.7	-	-
D111616	486,337	7,802,728	6.0	3.6	0.502	20.5	15.6	-	1
D111617	486,342	7,802,772	5.0	1.4	0.496	18.8	13.1	-	3
D111618	486,343	7,802,812	5.0	3.4	0.500	20.1	13.6	-	4
D111619	486,328	7,802,864	5.5	2.7	0.382	17.5	12.7	2	2
D111620	486,341	7,802,914	5.7	2.9	0.459	18.7	15.6	2	-
D111621	486,336	7,802,963	5.9	2.1	0.466	19.9	16.2	-	-
D111622	486,337	7,803,014	5.5	2.5	0.467	18.4	14.0	1	3
D111623	486,322	7,803,073	6.0	2.7	0.512	18.4	16.5	1	1
D111624	486,323	7,803,125	5.7	2.3	0.494	17.0	15.0	-	1
D111625	486,349	7,803,169	5.7	2.0	0.476	20.0	17.2	3	1
D111627	486,332	7,803,213	5.4	2.2	0.432	18.3	15.9	1	-
D111628	486,745	7,803,244	6.9	3.1	0.460	23.3	23.9	2	-
D111629	486,750	7,803,168	5.3	2.7	0.458	22.8	22.2	-	2
D111631	486,738	7,803,117	6.1	1.2	0.450	18.5	19.3	-	-
D111632	486,743	7,803,066	5.5	1.9	0.416	17.8	16.6	3	-
D111633	486,740	7,803,021	6.0	3.1	0.488	19.0	17.0	2	2
D111634	486,743	7,802,976	6.6	1.6	0.459	20.6	22.4	2	3
D111635	486,752	7,802,922	6.4	1.9	0.388	22.0	27.8	2	-
D111636	486,750	7,802,869	6.2	0.7	0.483	20.7	20.1	1	1
D111637	486,742	7,802,825	5.6	1.6	0.460	17.3	19.3	-	2
D111638	486,734	7,802,776	5.5	1.4	0.470	21.3	20.1	-	-
D111639	486,728	7,802,722	5.9	1.4	0.414	20.4	19.8	1	2
D111640	486,729	7,802,670	5.9	2.2	0.460	21.4	17.9	3	-
D111641	486,740	7,802,631	7.0	0.8	0.484	21.9	23.3	2	-
D111642	486,743	7,802,574	6.2	1.7	0.467	20.2	20.2	-	-

New Regional Geology Model \& Targets - Coyote

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	$\mathrm{Pt}(\mathrm{ppb})$	Pd(ppb)
D111643	486,749	7,802,512	6.3	3.0	0.435	22.0	22.2	3	-
D111644	486,742	7,802,470	6.5	1.2	0.448	21.3	19.8	1	1
D111645	486,731	7,802,424	6.5	1.7	0.394	21.5	22.5	2	-
D111646	486,751	7,802,371	6.6	0.6	0.402	19.9	20.2	2	1
D111647	486,743	7,802,319	6.3	1.5	0.438	21.1	18.8	1	3
D111648	486,743	7,802,266	6.9	2.0	0.398	21.7	24.4	2	2
D111649	486,748	7,802,223	6.1	0.5	0.377	19.8	21.4	-	1
D111650	486,742	7,802,170	7.6	1.5	0.374	22.2	23.3	2	-
D111652	486,750	7,802,115	9.4	0.7	0.510	18.9	21.0	1	-
D111653	486,742	7,802,071	9.1	0.9	0.398	22.9	21.5	2	3
D111654	486,739	7,802,021	8.5	1.5	0.502	31.1	26.4	-	1
D111655	486,753	7,801,970	7.9	0.8	0.436	22.9	17.2	1	3
D111656	486,751	7,801,911	8.9	1.6	0.509	24.1	21.9	3	2
D111657	486,742	7,801,874	7.9	1.5	0.515	21.7	15.1	2	-
D111658	486,734	7,801,834	10.0	2.0	0.530	25.6	20.5	3	-
D111659	486,724	7,801,774	8.0	1.1	0.506	22.6	20.0	1	2
D111661	486,743	7,801,725	8.6	1.6	0.567	26.3	22.1	2	-
D111662	486,743	7,801,669	8.4	-	0.515	22.4	18.9	1	5
D111663	486,742	7,801,623	9.4	2.3	0.542	25.8	26.9	1	1
D111664	486,757	7,801,581	7.5	1.5	0.493	27.4	21.4	-	2
D111665	486,742	7,801,523	9.1	1.7	0.585	22.5	21.1	3	1
D111666	486,743	7,801,463	8.5	1.4	0.558	18.1	16.4	2	4
D111667	486,730	7,801,422	7.5	1.4	0.546	18.3	13.5	1	2
D111668	486,759	7,801,375	7.9	1.1	0.616	19.5	17.2	1	1
D111669	486,736	7,801,324	9.3	1.9	0.545	23.2	19.8	-	4
D111670	486,750	7,801,277	9.5	0.7	0.561	21.4	20.0	2	-
D111671	486,760	7,801,224	8.4	2.1	0.558	24.8	20.6	3	-
D111672	486,739	7,801,168	9.6	2.9	0.588	17.8	19.2	-	-
D111673	486,750	7,801,133	10.7	1.1	0.710	27.9	25.7	-	1
D111674	486,349	7,801,159	10.3	1.2	0.509	21.8	20.1	2	3
D111675	486,344	7,801,225	10.4	2.3	0.619	22.4	15.7	-	2
D111677	486,363	7,801,268	9.9	1.3	0.513	23.5	20.5	2	-
D111678	486,338	7,801,309	10.0	0.6	0.588	22.9	20.6	1	3
D111679	486,330	7,801,372	10.0	1.3	0.681	27.4	20.2	3	-
D111680	486,339	7,801,428	9.3	0.8	0.627	22.6	20.2	-	4
D111681	486,338	7,801,470	12.3	1.8	0.832	61.8	39.6	2	2
D111682	486,334	7,801,516	6.9	0.5	0.627	23.5	19.7	-	2
D111683	486,346	7,801,575	7.4	1.3	0.489	22.5	21.9	-	5
D111684	486,337	7,801,615	8.3	1.2	0.655	24.9	19.6	2	4
D111685	486,342	7,801,663	8.8	0.6	0.630	23.8	19.1	-	4
D111686	486,345	7,801,719	7.4	0.9	0.611	23.4	20.8	-	2
D111687	486,335	7,801,772	7.8	1.1	0.558	24.2	18.1	-	3
D111688	486,332	7,801,814	7.3	2.4	0.576	22.9	15.3	2	4
D111689	486,339	7,801,858	7.5	0.6	0.542	23.3	16.5	-	2
D111691	486,336	7,801,918	6.8	1.1	0.494	22.2	14.4	2	4
D111692	486,324	7,801,969	7.4	1.2	0.548	22.2	16.3	2	5
D111693	486,350	7,802,014	8.7	0.9	0.630	25.9	18.0	2	5
D111694	486,341	7,802,066	8.1	1.0	0.551	22.1	16.5	3	1
D111695	486,338	7,802,112	9.5	3.2	0.483	28.3	18.8	2	4
D111696	486,343	7,802,166	8.7	1.0	0.557	22.2	19.7	-	6
D111697	486,336	7,802,216	9.2	4.9	0.566	27.1	18.8	2	2
D111698	486,341	7,802,274	9.7	1.2	0.573	23.7	19.0	2	4
D111699	486,339	7,802,318	9.7	1.5	0.533	25.2	20.7	-	4
D111701	486,332	7,802,377	8.9	-	0.490	24.2	24.4	2	4
D111702	486,337	7,802,417	7.4	2.7	0.448	19.8	16.0	-	4
D111703	487,136	7,802,163	6.9	0.7	0.454	16.7	17.1	-	3
D111704	487,132	7,802,222	6.4	1.0	0.469	23.1	25.9	-	2
D111705	487,147	7,802,271	6.4	0.8	0.427	19.7	17.9	1	5
D111706	487,137	7,802,320	6.3	1.5	0.446	21.3	22.4	-	4

New Regional Geology Model \& Targets - Coyote

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D111707	487,136	7,802,376	5.9	0.7	0.395	17.4	16.2	2	2
D111708	487,139	7,802,425	7.5	1.4	0.440	18.9	21.8	-	-
D111709	487,139	7,802,466	6.3	1.4	0.416	21.0	20.6	3	3
D111710	487,130	7,802,518	6.0	-	0.328	20.0	21.9	-	4
D111711	487,135	7,802,569	6.2	1.6	0.446	20.7	19.1	-	2
D111712	487,139	7,802,619	5.7	2.0	0.391	18.4	17.2	1	3
D111713	487,136	7,802,663	6.0	2.2	0.467	20.5	15.0	2	4
D111714	487,149	7,802,719	6.9	1.2	0.485	22.3	18.3	2	2
D111715	487,145	7,802,770	5.9	-	0.405	21.7	17.1	-	-
D111716	487,137	7,802,812	6.1	1.7	0.450	17.7	16.6	3	3
D111717	487,148	7,802,883	5.9	1.5	0.450	17.5	13.9	-	4
D111718	487,135	7,802,920	5.7	1.2	0.382	23.5	18.9	-	-
D111719	487,132	7,802,967	6.1	1.4	0.409	18.1	14.5	2	5
D111720	487,134	7,803,015	6.8	2.1	0.472	23.2	25.0	-	4
D111721	487,129	7,803,072	6.3	1.0	0.445	21.2	18.7	1	5
D111722	487,131	7,803,115	6.2	2.0	0.523	20.2	16.1	1	1
D111723	487,138	7,803,173	6.2	1.0	0.457	22.8	17.4	-	1
D111724	487,132	7,803,214	7.1	2.3	0.450	18.0	16.3	2	5
D111725	487,540	7,803,215	5.6	2.5	0.518	19.0	14.4	2	3
D111727	487,538	7,803,170	6.0	1.0	0.431	18.3	17.2	1	-
D111728	487,542	7,803,123	6.8	2.4	0.455	20.5	26.0	2	4
D111729	487,558	7,803,064	5.5	1.4	0.424	17.6	19.8	2	4
D111731	487,552	7,803,024	5.4	2.3	0.510	21.7	18.6	-	4
D111732	487,534	7,802,968	5.3	2.3	0.482	23.3	18.1	2	3
D111733	487,532	7,802,913	5.5	2.6	0.439	18.2	13.7	-	4
D111734	487,536	7,802,868	5.6	-	0.504	20.2	13.4	1	-
D111735	487,531	7,802,818	7.1	0.9	0.475	23.6	15.4	2	2
D111736	487,537	7,802,779	6.3	1.7	0.502	21.6	14.7	1	3
D111737	487,545	7,802,723	6.3	2.2	0.464	21.1	17.9	-	-
D111738	487,525	7,802,672	6.6	0.6	0.470	21.3	16.1	1	2
D111739	487,535	7,802,608	7.1	1.4	0.465	23.2	18.9	2	5
D111740	487,530	7,802,560	6.7	-	0.458	23.0	17.7	1	5
D111741	481,140	7,796,067	9.3	0.6	0.600	20.1	27.3	2	4
D111742	481,130	7,796,118	7.5	1.0	0.577	17.8	18.2	3	-
D111743	481,139	7,796,176	8.1	1.7	0.539	18.7	25.7	-	1
D111744	481,146	7,796,218	9.7	2.4	0.658	20.3	25.4	-	4
D111745	481,132	7,796,271	8.7	2.1	0.748	22.1	19.6	2	1
D111746	481,130	7,796,323	8.0	2.0	0.649	19.8	19.4	2	-
D111747	481,133	7,796,371	8.1	2.1	0.616	19.9	20.1	2	3
D111748	481,131	7,796,419	10.4	2.4	0.645	22.4	25.8	2	2
D111749	481,148	7,796,473	9.4	1.3	0.632	22.9	27.4	-	4
D111751	481,132	7,796,519	7.2	1.3	0.541	17.1	20.0	2	6
D111752	481,140	7,796,568	9.0	1.0	0.534	23.1	27.3	1	3
D111753	481,141	7,796,631	8.4	0.8	0.514	19.9	22.9	-	-
D111754	481,124	7,796,665	8.5	1.1	0.609	20.0	22.1	2	-
D111755	481,133	7,796,716	8.0	1.8	0.592	18.0	17.6	1	3
D111756	481,142	7,796,768	8.6	0.5	0.568	20.5	21.9	-	3
D111757	481,134	7,796,819	8.3	1.5	0.564	19.7	20.1	-	4
D111758	481,139	7,796,862	8.1	0.7	0.591	19.0	16.6	3	3
D111759	481,128	7,796,920	9.0	0.7	0.564	21.7	23.5	1	7
D111761	481,131	7,796,972	8.6	1.8	0.545	23.5	28.2	1	6
D111762	481,129	7,797,019	8.8	1.1	0.564	19.9	23.1	-	3
D111763	481,131	7,797,069	8.9	1.0	0.558	18.0	19.9	-	-
D111764	481,125	7,797,116	10.3	0.8	0.578	21.8	22.8	2	4
D111765	480,740	7,797,074	8.3	1.4	0.579	20.8	17.1	2	4
D111766	480,739	7,797,022	9.6	1.7	0.603	20.8	23.6	1	5
D111767	480,747	7,796,966	8.3	0.6	0.601	22.7	20.4	2	-
D111768	480,743	7,796,923	8.6	1.2	0.607	22.5	22.5	-	-
D111769	480,731	7,796,862	8.1	1.8	0.572	21.3	20.9	-	3

New Regional Geology Model \& Targets - Coyote

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D111770	480,728	7,796,821	8.9	1.5	0.642	21.0	24.2	-	5
D111771	480,739	7,796,762	9.4	1.9	0.610	23.2	23.8	-	7
D111772	480,751	7,796,717	7.7	1.1	0.701	19.6	19.7	2	7
D111773	480,746	7,796,666	8.7	1.9	0.683	24.1	24.3	2	3
D111774	480,745	7,796,617	8.3	1.0	0.654	21.9	20.5	2	3
D111775	480,743	7,796,568	8.9	1.5	0.657	24.0	23.1	2	1
D111777	480,743	7,796,522	7.6	1.3	0.561	17.9	19.2	2	4
D111778	480,741	7,796,471	8.0	1.8	0.568	21.6	21.7	-	4
D111779	480,741	7,796,419	8.8	1.8	0.605	23.6	23.4	2	3
D111780	480,743	7,796,373	9.0	1.0	0.627	24.3	23.4	2	6
D111781	480,740	7,796,315	7.1	0.8	0.607	16.8	15.3	-	6
D111782	480,729	7,796,275	7.8	0.7	0.535	21.6	24.3	-	7
D111783	480,739	7,796,211	8.7	0.9	0.638	24.2	23.5	-	2
D111784	480,749	7,796,169	7.8	1.9	0.569	20.2	20.6	2	6
D111785	480,733	7,796,114	8.0	1.3	0.569	19.9	22.3	4	5
D111786	480,742	7,796,079	7.8	1.2	0.596	20.3	19.9	2	3
D111787	479,943	7,796,421	7.4	0.7	0.514	16.4	18.2	2	6
D111788	479,941	7,796,370	6.9	1.8	0.506	15.6	15.9	1	3
D111789	479,937	7,796,320	7.4	-	0.523	18.6	17.7	1	4
D111791	479,941	7,796,274	9.1	1.9	0.527	19.1	27.4	3	4
D111792	479,937	7,796,218	7.8	1.4	0.543	16.0	16.0	-	2
D111793	479,948	7,796,172	7.4	0.7	0.493	14.6	17.1	2	2
D111794	479,945	7,796,119	7.7	1.5	0.452	16.2	19.1	1	2
D111795	480,334	7,796,080	9.5	1.5	0.676	16.5	16.7	1	2
D111796	480,339	7,796,120	9.9	1.4	0.704	18.6	18.7	-	2
D111797	480,341	7,796,168	9.2	1.3	0.678	16.7	16.5	-	2
D111798	480,328	7,796,219	9.1	1.2	0.693	18.5	17.4	-	2
D111799	480,326	7,796,264	8.1	1.4	0.615	17.9	16.7	-	2
D111801	480,340	7,796,317	9.8	1.4	0.616	18.8	22.0	-	2
D111802	480,333	7,796,367	9.7	2.0	0.670	22.7	25.7	1	2
D111803	480,336	7,796,412	9.1	1.7	0.632	18.0	20.7	3	3
D111804	480,342	7,796,465	8.9	1.4	0.631	17.2	22.5	2	3
D111805	480,329	7,796,514	11.0	1.1	0.766	22.5	24.1	-	3
D111806	480,336	7,796,562	8.6	0.7	0.673	18.0	22.2	1	4
D111807	480,323	7,796,621	8.6	1.6	0.753	18.0	21.3	2	2
D111808	480,323	7,796,670	9.2	1.4	0.594	19.2	22.9	1	5
D111809	480,324	7,796,728	9.4	1.4	0.627	19.8	29.1	-	2
D111810	480,319	7,796,772	8.7	0.6	0.630	19.2	24.5	2	1
D111811	480,338	7,796,821	9.3	1.1	0.546	19.1	27.5	2	6
D111812	480,340	7,796,864	10.2	0.9	0.621	19.7	24.7	-	4
D111813	480,335	7,796,913	9.8	1.8	0.626	19.4	24.1	2	2
D111814	480,338	7,796,970	9.7	1.4	0.644	19.4	22.4	3	2
D111815	479,932	7,796,920	9.3	1.5	0.653	20.8	22.2	-	-
D111816	479,939	7,796,869	9.6	1.0	0.636	19.6	21.4	1	2
D111817	479,940	7,796,820	8.8	2.7	0.595	19.1	19.9	1	2
D111818	479,921	7,796,774	7.9	2.2	0.541	19.4	14.0	-	3
D111819	479,928	7,796,721	8.8	1.1	0.493	20.4	22.0	-	3
D111820	479,934	7,796,670	8.7	1.1	0.588	18.5	14.9	1	2
D111821	479,938	7,796,630	8.9	0.6	0.575	18.3	15.8	-	-
D111822	479,944	7,796,579	9.0	1.1	0.601	19.6	17.5	1	5
D111823	479,944	7,796,528	8.7	0.7	0.572	18.0	14.7	1	3
D111824	479,937	7,796,468	9.4	1.8	0.569	23.0	19.4	2	4
D111825	481,231	7,792,869	7.7	1.2	0.470	19.2	20.6	1	1
D111827	481,248	7,792,816	8.5	1.8	0.508	16.3	17.6	-	2
D111828	481,233	7,792,768	11.8	1.8	0.647	21.4	26.2	-	1
D111829	481,241	7,792,720	9.0	1.4	0.509	18.2	20.8	2	-
D111831	481,225	7,792,663	6.3	1.6	0.522	15.8	17.7	-	1
D111832	481,231	7,792,621	5.2	2.7	0.521	14.6	11.5	2	1
D111833	481,231	7,792,562	6.0	1.9	0.557	16.3	18.9	2	5

New Regional Geology Model \& Targets - Coyote

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D111834	481,227	7,792,527	13.3	2.3	0.648	17.0	13.6	1	5
D111835	481,240	7,792,465	9.9	2.7	0.502	17.7	21.8	-	-
D111836	481,237	7,792,419	8.4	1.4	0.520	18.6	21.7	-	1
D111837	481,044	7,792,422	6.8	1.8	0.522	16.7	13.4	2	2
D111838	481,033	7,792,466	7.0	2.4	0.549	15.2	13.6	1	-
D111839	481,041	7,792,526	7.6	1.4	0.508	18.0	23.8	-	5
D111840	481,040	7,792,565	6.4	1.8	0.500	15.9	16.4	-	4
D111841	481,036	7,792,617	7.8	1.3	0.549	17.1	16.1	-	2
D111842	481,038	7,792,668	7.9	2.1	0.563	17.0	21.3	2	1
D111843	481,037	7,792,721	8.1	2.1	0.546	17.1	21.5	3	2
D111844	481,042	7,792,764	8.6	1.7	0.562	18.3	20.1	2	2
D111845	481,037	7,792,820	8.9	1.5	0.638	17.9	20.2	-	1
D111846	481,035	7,792,883	8.1	1.2	0.599	16.9	19.4	1	3
D111847	481,035	7,792,916	8.6	-	0.541	17.1	20.6	1	4
D111848	481,041	7,792,967	7.4	-	0.537	15.4	20.2	-	4
D111849	481,044	7,793,014	6.7	2.3	0.578	19.1	20.2	3	-
D111850	481,037	7,793,066	6.8	2.8	0.545	17.9	18.0	1	3
D111852	481,020	7,793,119	6.6	1.9	0.528	19.0	24.6	-	1
D111853	481,039	7,793,165	6.0	0.8	0.505	18.5	19.8	-	4
D111854	481,030	7,793,230	8.2	1.9	0.510	17.7	22.5	2	1
D111855	481,034	7,793,274	8.8	2.4	0.532	16.5	18.0	-	1
D111856	481,035	7,793,320	8.2	2.5	0.507	17.3	17.9	2	-
D111857	481,027	7,793,370	8.3	1.5	0.517	17.6	24.7	1	-
D111858	481,244	7,793,366	6.4	2.1	0.487	16.4	23.7	-	2
D111859	481,231	7,793,322	7.2	1.7	0.506	15.3	18.4	1	-
D111861	481,236	7,793,261	5.3	2.9	0.527	14.1	14.7	2	3
D111862	481,249	7,793,226	6.1	1.1	0.463	18.1	20.5	-	1
D111863	481,234	7,793,167	6.7	1.7	0.530	16.0	19.3	2	3
D111864	481,257	7,793,120	7.8	1.7	0.515	19.8	24.5	-	4
D111865	481,235	7,793,069	7.2	0.9	0.546	18.8	19.2	2	4
D111866	481,242	7,793,022	8.1	0.8	0.528	19.2	21.4	1	-
D111867	481,254	7,792,968	10.0	1.0	0.532	17.7	22.4	1	-
D111868	481,245	7,792,920	9.0	0.8	0.544	18.1	16.8	1	3
D111869	481,626	7,792,860	7.0	1.3	0.549	17.3	21.1	1	4
D111870	481,655	7,792,797	5.4	2.3	0.502	17.9	17.0	2	-
D111871	481,656	7,792,624	5.8	1.1	0.504	15.2	21.9	1	1
D111872	481,660	7,792,570	6.1	1.5	0.508	17.3	26.6	2	-
D111873	481,650	7,792,462	6.8	0.7	0.486	17.7	23.5	-	4
D111874	481,643	7,792,398	6.3	1.9	0.510	17.8	17.8	3	1
D111875	481,434	7,792,419	6.6	1.8	0.497	18.7	21.4	-	1
D111877	481,433	7,792,464	5.9	2.1	0.508	17.7	25.4	3	1
D111878	481,428	7,792,530	6.1	1.9	0.494	16.5	19.5	2	1
D111879	481,436	7,792,568	5.6	0.9	0.494	16.8	20.7	3	2
D111880	481,438	7,792,618	6.1	1.0	0.476	17.2	23.0	-	2
D111881	481,438	7,792,723	6.7	1.0	0.551	16.6	18.2	-	-
D111882	481,429	7,792,776	6.6	1.1	0.604	16.9	21.6	-	2
D111883	481,430	7,792,878	7.5	1.2	0.534	15.2	18.6	-	-
D111884	481,427	7,792,919	10.0	1.7	0.568	17.2	24.7	2	3
D111885	481,437	7,792,970	6.2	-	0.522	18.1	16.4	-	2
D111886	481,440	7,793,019	6.5	1.1	0.508	17.5	20.6	-	2
D111887	481,439	7,793,064	6.8	1.2	0.528	17.4	20.4	2	3
D111888	481,441	7,793,113	7.6	1.4	0.548	16.3	21.1	2	3
D111889	481,441	7,793,158	6.3	1.1	0.504	15.6	18.8	-	2
D111891	481,441	7,793,217	6.4	2.8	0.561	18.6	21.2	1	2
D111892	481,425	7,793,264	6.2	1.4	0.480	18.9	27.8	-	3
D111893	481,448	7,793,309	6.2	3.0	0.551	18.0	23.1	3	3
D111894	481,426	7,793,369	8.1	3.2	0.485	17.3	30.7	2	-
D111895	481,651	7,793,372	6.0	3.6	0.551	15.5	14.4	-	-
D111896	481,650	7,793,322	5.7	1.5	0.518	14.6	17.0	3	4

New Regional Geology Model \& Targets - Coyote

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	$\mathrm{Cu}(\mathrm{ppm})$	Ni(ppm)	Pt(ppb)	Pd(ppb)
D111897	481,638	7,793,254	7.1	2.2	0.524	16.9	22.6	-	1
D111898	481,649	7,793,229	7.4	0.9	0.548	20.1	25.0	-	4
D111899	481,638	7,793,104	6.5	1.9	0.543	16.9	16.7	-	1
D111901	481,641	7,793,081	6.2	0.6	0.517	18.1	20.1	2	3
D111903	481,639	7,792,933	6.9	1.2	0.498	19.0	26.1	1	2
D111904	482,037	7,792,929	6.8	1.9	0.507	16.9	22.5	-	2
D111905	482,030	7,792,969	6.6	2.7	0.508	15.0	15.7	2	1
D111906	482,016	7,793,024	6.0	1.4	0.530	17.8	17.7	2	2
D111907	482,032	7,793,070	7.1	2.3	0.542	18.4	19.3	-	2
D111908	482,025	7,793,122	7.5	2.3	0.457	16.3	21.1	2	-
D111909	482,031	7,793,168	7.9	2.3	0.538	16.4	16.9	2	2
D111910	482,034	7,793,218	8.1	1.8	0.599	22.1	29.5	-	4
D111911	482,043	7,793,282	9.8	2.3	0.548	16.7	27.1	1	-
D111912	482,036	7,793,320	8.5	2.2	0.545	18.4	22.2	1	-
D111913	482,024	7,793,370	10.5	1.6	0.590	17.0	27.7	-	3
D111914	481,844	7,793,316	7.2	0.7	0.561	17.8	20.7	2	2
D111915	481,849	7,793,180	6.1	3.0	0.519	16.3	23.2	2	1
D111916	481,846	7,793,063	5.3	2.6	0.550	17.9	19.6	-	5
D111917	481,842	7,793,026	6.7	2.7	0.500	15.8	23.0	1	-
D111918	481,842	7,792,973	6.6	2.6	0.516	16.2	25.3	1	4
D111919	481,845	7,792,926	5.5	3.0	0.499	15.8	22.0	-	2
D111920	481,841	7,792,874	6.9	2.3	0.503	17.4	28.8	-	3
D111921	481,852	7,792,697	6.4	2.0	0.492	16.7	24.6	-	2
D111922	481,831	7,792,679	5.2	2.5	0.536	14.6	17.6	-	1
D111923	481,839	7,792,616	6.9	1.2	0.548	16.1	22.3	2	-
D111924	481,825	7,792,566	6.2	0.9	0.542	19.1	24.7	1	2
D111925	481,830	7,792,517	6.4	2.2	0.539	16.0	22.8	-	2
D111927	481,848	7,792,466	5.7	2.7	0.528	17.3	16.9	-	-
D111928	481,850	7,792,419	5.3	2.5	0.533	16.8	20.6	-	1
D111929	482,045	7,792,421	5.9	1.6	0.534	17.7	19.0	-	-
D111931	482,029	7,792,475	5.3	3.3	0.550	15.3	14.8	1	-
D111932	482,039	7,792,513	6.7	2.4	0.550	14.3	17.3	1	-
D111933	482,039	7,792,561	6.6	3.2	0.502	16.5	20.0	-	2
D111934	482,025	7,792,634	6.3	2.4	0.488	17.4	22.2	-	2
D111935	482,038	7,792,730	6.7	3.2	0.518	16.8	20.5	2	1
D111936	482,041	7,792,766	5.7	1.7	0.470	16.0	18.8	1	2
D111937	482,051	7,792,819	6.3	2.0	0.494	16.7	18.8	-	4
D111938	482,337	7,792,929	6.1	2.2	0.608	17.2	14.3	1	2
D111939	482,336	7,792,964	6.3	3.3	0.530	17.9	17.3	-	2
D111940	482,333	7,793,013	7.2	2.0	0.509	17.7	21.1	2	4
D111941	482,341	7,793,074	6.1	2.2	0.510	16.6	15.9	-	4
D111942	482,336	7,793,135	6.6	1.9	0.535	16.8	19.5	3	2
D111943	482,332	7,793,176	6.1	2.5	0.473	16.5	14.9	2	5
D111944	482,328	7,793,225	6.6	1.8	0.518	19.4	19.0	1	1
D111945	482,334	7,793,267	5.9	3.3	0.486	18.5	16.8	2	2
D111946	482,334	7,793,321	5.9	3.5	0.487	19.8	16.7	1	2
D111947	482,337	7,793,364	6.2	7.2	0.574	18.8	15.3	-	2
D111948	482,244	7,793,367	7.5	3.5	0.532	18.6	16.2	2	5
D111949	482,244	7,793,328	7.8	2.2	0.478	20.4	19.2	1	3
D111950	482,237	7,793,284	7.3	0.8	0.502	20.4	21.3	-	3
D111952	482,216	7,793,236	7.6	2.3	0.560	18.2	20.9	2	4
D111953	482,233	7,793,164	7.6	1.6	0.490	18.4	22.9	1	3
D111954	482,239	7,793,120	7.6	3.5	0.489	17.8	21.6	-	3
D111955	482,239	7,793,071	6.5	2.7	0.489	17.3	17.6	-	3
D111956	482,236	7,793,013	6.1	1.7	0.544	16.8	14.0	3	5
D111957	482,235	7,792,970	6.6	0.8	0.461	17.3	16.9	1	6
D111958	482,236	7,792,925	7.4	1.5	0.515	17.2	22.1	-	4
D111959	482,229	7,792,866	6.6	2.8	0.488	17.9	17.3	-	2
D111961	482,232	7,792,813	7.1	2.7	0.460	18.1	22.9	2	4

New Regional Geology Model \& Targets - Coyote

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu (ppm)	Ni(ppm)	Pt(ppb)	$\mathrm{Pd}(\mathrm{ppb})$
D111962	482,235	7,792,759	8.6	1.3	0.462	18.4	25.2	2	1
D111963	482,239	7,792,712	7.3	1.6	0.545	19.4	19.0	-	-
D111964	482,222	7,792,621	8.0	2.1	0.400	19.5	25.7	2	5
D111965	482,223	7,792,580	8.4	3.1	0.439	18.8	24.4	-	3
D111966	482,239	7,792,528	7.4	2.2	0.517	19.2	21.7	3	-
D111967	482,245	7,792,462	7.7	2.0	0.479	16.5	20.1	2	1
D111968	482,228	7,792,412	7.4	3.2	0.450	18.3	23.8	2	2
D111969	482,345	7,792,358	8.4	2.2	0.578	18.9	19.3	1	2
D111970	482,343	7,792,410	9.5	1.7	0.519	21.4	29.2	3	-
D111971	482,349	7,792,473	9.4	-	0.553	20.4	27.5	1	1
D111972	482,340	7,792,515	8.2	5.8	0.572	19.2	19.1	2	-
D111973	482,343	7,792,559	8.9	3.5	0.518	20.4	28.9	-	3
D111974	482,329	7,792,619	8.1	4.1	0.538	19.9	24.6	2	1
D111975	482,344	7,792,673	7.4	3.6	0.561	18.7	20.6	2	4
D111976	482,324	7,792,719	8.5	3.1	0.553	20.9	26.5	-	3
D111978	482,352	7,792,767	8.3	2.2	0.484	20.0	27.3	-	2
D111979	482,333	7,792,819	8.6	2.1	0.550	20.2	27.7	1	6
D111980	482,555	7,792,917	5.3	1.1	0.416	18.5	19.2	2	1
D111981	482,545	7,792,970	7.1	1.5	0.426	20.7	24.5	-	4
D111982	482,532	7,793,018	6.2	2.1	0.422	20.4	22.5	1	3
D111983	482,534	7,792,865	7.7	1.3	0.406	20.2	29.4	-	4
D111984	482,535	7,793,067	5.8	2.4	0.495	20.8	21.6	2	5
D111985	482,536	7,793,126	7.1	0.7	0.444	20.1	25.9	-	5
D111986	482,527	7,793,170	7.8	2.6	0.511	20.9	26.6	-	3
D111987	482,536	7,793,220	6.7	1.3	0.432	21.4	23.9	-	3
D111988	482,534	7,793,266	7.2	1.9	0.487	21.1	25.3	-	3
D111989	482,537	7,793,321	7.7	5.4	0.479	18.1	27.1	2	6
D111991	482,537	7,793,363	6.9	11.1	0.529	22.2	23.7	2	4
D111992	482,444	7,793,374	7.9	2.0	0.580	22.6	29.7	2	7
D111993	482,433	7,793,333	8.3	1.4	0.550	22.5	27.7	2	6
D111994	482,451	7,793,282	7.5	2.9	0.462	22.8	29.4	2	7
D111995	482,440	7,793,218	7.4	5.2	0.573	17.0	17.2	-	2
D111996	482,435	7,793,176	6.4	4.4	0.581	20.0	15.3	-	3
D111997	482,446	7,793,119	6.5	4.6	0.528	18.3	15.7	2	-
D111998	482,437	7,793,071	6.1	3.5	0.574	14.9	12.6	-	3
D111999	482,440	7,793,018	8.5	3.1	0.565	16.7	19.0	-	-
D112068	482,442	7,792,967	6.4	1.4	0.494	16.6	16.9	1	1
D112069	482,442	7,792,916	7.2	1.6	0.473	19.4	24.7	1	4
D112070	482,437	7,792,869	5.8	2.0	0.459	18.9	16.5	1	-
D112071	482,441	7,792,815	5.6	2.9	0.429	17.9	15.7	1	-
D112072	482,438	7,792,776	7.1	1.9	0.466	20.3	21.1	1	1
D112073	482,442	7,792,715	7.0	2.7	0.475	19.1	23.6	-	4
D112074	482,439	7,792,676	6.2	1.8	0.459	17.3	18.2	3	3
D112075	482,443	7,792,626	6.0	3.1	0.492	18.7	17.2	3	3
D112076	482,429	7,792,564	6.0	2.9	0.567	18.4	17.1	3	5
D112077	482,438	7,792,527	7.0	2.0	0.480	19.2	22.8	-	3
D112078	482,438	7,792,527	5.8	2.3	0.495	17.9	17.3	2	4
D112079	482,458	7,792,490	6.9	2.8	0.446	19.4	23.2	-	4
D112080	482,463	7,792,428	7.9	2.9	0.558	18.2	23.4	-	3
D112081	482,429	7,792,383	8.0	0.9	0.521	18.9	24.8	1	3
D112082	482,542	7,792,379	7.1	3.1	0.541	18.7	15.9	2	3
D112083	482,537	7,792,420	6.7	2.8	0.532	19.1	15.4	-	2
D112084	482,540	7,792,477	7.1	1.4	0.445	19.4	20.9	2	5
D112085	482,539	7,792,516	7.2	2.8	0.509	19.6	18.4	1	2
D112086	482,558	7,792,565	7.1	2.7	0.517	16.8	18.2	2	2
D112087	482,534	7,792,617	6.2	1.8	0.553	19.3	19.7	2	2
D112088	482,543	7,792,666	7.5	1.5	0.498	17.3	18.7	1	2
D112089	482,545	7,792,719	7.4	1.6	0.522	20.6	20.8	1	4
D112091	482,553	7,792,764	7.9	1.0	0.485	21.2	26.0	2	5

New Regional Geology Model \& Targets - Coyote

Sample ID	Easting	Northing	As (ppm)	$\mathrm{Au}(\mathrm{ppb})$	Bi(ppm)	$\mathrm{Cu}(\mathrm{ppm})$	Ni(ppm)	$\mathrm{Pt}(\mathrm{ppb})$	$\mathrm{Pd}(\mathrm{ppb})$
D112092	482,532	7,792,825	5.9	1.9	0.534	20.7	16.5	1	4
D112093	482,153	7,792,865	6.6	3.8	0.524	19.4	21.7	-	4
D112094	482,131	7,792,917	6.6	3.6	0.561	19.4	22.6	1	4
D112095	482,136	7,793,014	7.8	3.1	0.566	19.9	20.7	3	3
D112096	482,136	7,793,071	7.0	1.6	0.513	20.0	22.0	-	5
D112097	482,141	7,793,169	7.0	3.4	0.423	19.3	18.4	-	3
D112098	482,148	7,793,220	6.8	1.9	0.432	19.8	17.2	-	1
D112099	482,158	7,793,271	7.2	2.1	0.511	22.4	18.6	3	3
D113501	482,143	7,793,320	7.4	3.0	0.561	19.8	18.7	2	-
D113502	482,125	7,793,374	7.7	1.6	0.510	24.0	20.0	-	4
D113503	481,935	7,793,270	8.1	2.1	0.476	18.5	20.2	1	-
D113504	481,961	7,793,218	7.4	4.1	0.552	18.4	17.0	-	-
D113505	481,940	7,793,170	7.6	2.9	0.486	20.3	19.9	3	5
D113506	481,947	7,793,121	7.3	2.9	0.465	19.2	20.8	1	3
D113507	481,952	7,793,024	6.7	2.8	0.467	17.5	20.4	2	1
D113508	481,950	7,793,076	5.9	2.3	0.520	16.3	14.7	2	4
D113509	481,940	7,792,973	5.7	3.1	0.480	17.1	17.8	2	1
D113511	481,933	7,792,863	5.2	4.0	0.531	15.6	12.7	1	3
D113512	481,935	7,792,828	5.2	2.6	0.540	16.8	14.9	2	2
D113513	488,982	7,780,386	8.0	2.5	0.482	18.2	20.9	-	3
D113514	489,039	7,780,392	7.6	2.1	0.535	19.8	16.7	2	4
D113515	489,087	7,780,399	5.3	1.8	0.494	17.1	15.5	1	2
D113516	489,134	7,780,390	7.9	1.8	0.498	18.8	19.9	3	4
D113517	489,183	7,780,393	8.7	2.8	0.465	18.6	18.9	3	-
D113518	489,241	7,780,394	8.6	2.3	0.469	15.3	13.8	2	1
D113519	489,291	7,780,396	8.5	2.3	0.454	17.6	16.2	-	5
D113520	489,341	7,780,392	9.3	1.5	0.487	15.5	14.2	1	-
D113521	489,387	7,780,394	10.7	0.6	0.504	18.1	17.2	-	5
D113522	489,435	7,780,395	10.9	1.2	0.498	16.6	18.0	-	5
D113523	489,481	7,780,390	12.9	0.8	0.520	20.0	19.0	1	-
D113524	489,534	7,780,386	11.5	1.2	0.469	18.1	15.0	1	3
D113525	489,584	7,780,392	30.2	1.4	0.526	18.3	17.6	2	3
D113527	489,581	7,780,589	38.6	1.7	0.504	17.2	18.1	2	-
D113528	489,526	7,780,591	10.9	0.9	0.567	15.9	14.6	2	2
D113529	489,478	7,780,597	9.9	1.2	0.541	16.1	17.9	2	6
D113531	489,441	7,780,592	9.5	0.7	0.526	17.7	16.5	1	-
D113532	489,386	7,780,592	12.1	0.8	0.490	16.3	17.6	1	4
D113533	489,334	7,780,594	9.7	1.6	0.486	17.2	17.4	1	4
D113534	489,286	7,780,598	9.0	1.8	0.473	17.7	18.9	3	6
D113535	489,238	7,780,600	8.6	1.2	0.537	17.4	20.6	-	1
D113536	489,190	7,780,595	7.0	3.5	0.458	17.6	20.7	3	5
D113537	489,132	7,780,596	7.9	2.9	0.474	17.7	16.2	-	-
D113538	489,087	7,780,593	8.0	1.4	0.503	16.5	16.2	-	1
D113539	489,036	7,780,595	8.0	1.0	0.523	18.0	18.7	4	2
D113540	488,988	7,780,592	7.3	1.6	0.483	17.3	19.1	-	-
D113541	488,939	7,780,599	7.6	2.1	0.517	17.4	18.2	2	4
D113542	488,890	7,780,595	8.1	0.8	0.508	16.3	19.0	1	4
D113543	488,828	7,780,592	8.7	1.1	0.509	18.3	23.3	3	4
D113544	488,788	7,780,595	4.3	-	0.256	11.2	13.5	4	2
D113545	488,738	7,780,590	9.9	0.6	0.527	18.8	23.2	-	5
D113546	488,685	7,780,586	7.6	1.9	0.426	16.9	17.2	2	4
D113547	488,634	7,780,588	9.5	1.0	0.434	16.6	19.4	1	3
D113548	488,588	7,780,591	8.3	1.6	0.493	16.7	16.4	2	4
D113549	488,532	7,780,597	8.7	0.7	0.480	17.7	19.8	4	2
D113551	488,478	7,780,588	9.5	0.7	0.630	16.3	15.8	2	-
D113553	488,437	7,780,589	9.9	1.0	0.459	17.4	19.7	-	5
D113554	488,386	7,780,602	11.6	1.3	0.437	20.6	17.3	2	5
D113555	488,331	7,780,608	10.4	0.6	0.401	18.5	15.7	-	2
D113556	488,338	7,780,390	12.0	1.5	0.578	17.8	15.0	2	5

New Regional Geology Model \& Targets - Coyote

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D113557	488,381	7,780,391	14.9	0.6	0.550	19.5	19.2	1	5
D113558	488,437	7,780,395	10.7	1.1	0.449	19.6	18.7	2	4
D113559	488,485	7,780,393	9.9	1.9	0.426	17.9	15.5	-	3
D113561	488,533	7,780,392	9.3	-	0.453	22.2	20.4	3	6
D113562	488,581	7,780,396	9.5	1.9	0.440	19.2	19.5	2	4
D113563	488,631	7,780,398	8.3	1.2	0.446	20.4	17.8	2	2
D113564	488,685	7,780,394	9.4	1.2	0.461	15.6	15.6	3	2
D113565	488,742	7,780,400	8.8	1.9	0.428	17.0	17.4	1	-
D113566	488,789	7,780,395	9.3	2.2	0.451	15.3	20.7	2	6
D113567	488,840	7,780,391	7.5	2.9	0.456	19.7	19.5	-	-
D113568	488,882	7,780,399	6.7	1.9	0.417	17.0	17.7	-	-
D113569	488,934	7,780,399	9.2	2.0	0.493	19.9	22.3	-	4
D113570	488,985	7,781,385	22.1	1.7	0.504	15.6	14.0	-	2
D113571	489,034	7,781,396	18.7	1.8	0.511	16.5	17.2	-	7
D113572	489,085	7,781,391	14.0	2.6	0.482	13.6	12.1	1	-
D113573	489,135	7,781,392	14.5	0.9	0.511	13.9	17.7	2	7
D113574	489,192	7,781,394	8.6	0.7	0.488	14.0	12.8	3	4
D113575	489,237	7,781,402	7.5	0.8	0.387	15.3	14.3	-	4
D113577	489,284	7,781,391	8.4	-	0.366	13.2	14.2	-	3
D113578	489,339	7,781,393	7.6	1.4	0.312	13.1	15.9	2	4
D113579	489,381	7,781,394	10.1	0.8	0.298	13.8	16.3	-	7
D113580	489,429	7,781,394	8.5	2.1	0.288	13.2	15.5	1	7
D113581	489,490	7,781,388	7.6	0.8	0.299	11.5	11.6	1	4
D113582	489,534	7,781,384	6.8	1.8	0.304	12.4	13.5	1	3
D113583	489,587	7,781,398	7.0	0.9	0.294	13.0	12.1	-	4
D113584	489,601	7,780,988	14.4	2.2	0.542	18.4	17.5	-	4
D113585	489,538	7,780,992	12.0	-	0.538	20.2	14.9	2	3
D113586	489,487	7,780,985	8.1	2.2	0.456	16.2	13.2	3	2
D113587	489,440	7,780,993	7.7	1.2	0.420	15.0	12.5	-	4
D113588	489,384	7,780,990	8.0	0.9	0.524	14.7	14.1	3	7
D113589	489,337	7,780,998	9.0	1.2	0.459	14.8	15.6	2	4
D113591	489,287	7,780,999	7.2	1.7	0.454	15.9	13.1	3	5
D113592	489,237	7,780,985	8.6	1.2	0.485	17.2	16.1	2	5
D113593	489,191	7,780,989	14.2	0.9	0.493	15.6	13.3	1	3
D113594	489,136	7,780,991	8.6	0.9	0.505	14.6	13.1	2	1
D113595	489,087	7,780,995	6.5	0.6	0.391	12.1	9.6	-	3
D113596	489,039	7,780,991	8.3	1.1	0.492	14.9	15.1	2	6
D113597	489,004	7,780,998	10.9	1.7	0.544	14.4	14.2	-	3
D113598	488,944	7,780,996	8.6	1.1	0.517	15.6	20.2	2	4
D113599	488,892	7,780,994	8.2	1.8	0.469	14.4	11.9	-	2
D113601	488,846	7,780,991	8.9	2.5	0.451	14.6	13.1	4	1
D113602	488,792	7,780,990	7.3	1.1	0.440	14.8	15.4	-	3
D113603	488,739	7,780,998	7.4	1.6	0.408	15.8	21.8	2	7
D113604	488,678	7,780,996	8.5	0.6	0.417	14.9	16.4	1	7
D113605	488,630	7,780,993	10.4	1.6	0.449	16.2	18.4	2	2
D113606	488,590	7,780,999	10.6	1.6	0.505	18.2	17.4	1	7
D113607	488,535	7,780,992	9.9	2.3	0.410	17.3	16.2	2	7
D113608	488,485	7,780,991	7.5	1.1	0.230	12.4	8.3	2	-
D113609	488,434	7,780,989	7.9	0.7	0.279	14.4	9.0	2	6
D113610	488,386	7,781,004	7.0	0.5	0.299	13.3	8.4	-	2
D113611	488,326	7,780,982	8.0	-	0.415	12.5	16.4	3	6
D113612	488,287	7,781,395	12.1	1.8	0.718	29.3	29.7	1	2
D113613	488,337	7,781,398	9.8	1.3	0.485	18.3	18.2	2	-
D113614	488,384	7,781,410	23.6	0.7	0.612	20.2	20.9	-	3
D113615	488,438	7,781,397	39.8	-	0.563	19.5	19.2	-	7
D113616	488,489	7,781,400	25.2	0.7	0.546	15.1	18.7	2	6
D113617	488,532	7,781,397	24.9	1.7	0.433	14.9	14.5	2	8
D113618	488,588	7,781,395	49.0	1.6	0.418	15.0	20.9	-	4
D113619	488,632	7,781,394	15.7	1.5	0.469	16.7	17.4	2	-

New Regional Geology Model \& Targets - Coyote

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D113620	488,685	7,781,393	12.5	0.7	0.510	13.2	10.2	-	1
D113621	488,733	7,781,399	11.1	1.2	0.513	14.7	13.9	-	2
D113622	488,777	7,781,397	10.8	1.4	0.508	15.8	17.5	2	6
D113623	488,833	7,781,400	8.6	1.2	0.515	14.8	12.6	-	-
D113624	488,890	7,781,391	10.1	1.4	0.534	13.6	12.9	1	3
D113625	488,928	7,781,396	13.3	1.0	0.484	15.6	17.4	1	7
D113626	488,928	7,781,396	14.2	2.2	0.499	15.8	17.8	-	7
D113627	488,287	7,781,794	13.8	3.1	0.621	31.5	31.8	1	1
D113628	488,334	7,781,799	16.5	1.5	0.570	24.4	25.1	-	3
D113629	488,388	7,781,785	13.1	-	0.540	18.4	17.1	1	2
D113631	488,432	7,781,800	6.6	1.1	0.391	11.7	8.4	-	2
D113632	488,481	7,781,791	9.9	2.0	0.556	17.6	12.8	1	3
D113633	488,532	7,781,795	14.1	1.2	0.561	21.4	17.3	-	3
D113634	488,587	7,781,798	12.4	1.7	0.569	17.1	20.2	-	4
D113635	488,638	7,781,792	11.9	1.1	0.563	16.0	13.4	-	2
D113636	488,698	7,781,802	10.7	2.4	0.632	19.2	18.5	4	4
D113637	488,733	7,781,799	9.6	1.9	0.648	21.0	22.0	1	5
D113638	488,786	7,781,777	9.8	1.1	0.606	16.7	14.4	2	5
D113639	488,833	7,781,782	10.4	0.6	0.601	18.5	15.3	1	3
D113640	489,583	7,781,791	6.8	1.2	0.527	18.8	22.8	-	7
D113641	489,540	7,781,798	6.7	1.0	0.480	15.6	17.3	1	5
D113642	489,481	7,781,800	6.3	1.4	0.449	14.3	12.9	2	-
D113643	489,441	7,781,805	6.9	1.1	0.506	12.0	12.2	2	4
D113644	489,393	7,781,802	7.0	0.5	0.595	18.3	15.0	2	4
D113645	489,340	7,781,793	6.6	0.9	0.607	17.6	19.8	2	6
D113646	489,290	7,781,798	7.7	1.5	0.679	20.4	16.5	1	-
D113647	489,238	7,781,791	9.3	0.7	0.572	18.2	16.2	3	4
D113648	489,191	7,781,794	9.0	1.1	0.630	20.7	16.9	2	-
D113649	489,146	7,781,796	12.0	1.8	0.612	20.6	18.3	1	1
D113651	489,080	7,781,795	9.2	0.9	0.604	17.4	14.6	1	3
D113652	489,041	7,781,794	10.3	2.3	0.611	18.0	16.7	1	2
D113653	488,991	7,781,791	10.0	1.3	0.648	19.2	16.9	-	6
D113654	488,932	7,781,789	22.4	1.3	0.576	19.7	17.2	-	3
D113655	488,884	7,781,798	12.4	1.1	0.608	18.8	17.8	2	2
D113656	490,942	7,801,062	8.5	2.2	0.518	23.5	22.2	2	5
D113657	490,939	7,801,113	8.3	0.7	0.539	27.2	29.0	2	5
D113658	490,932	7,801,174	9.1	1.2	0.573	25.1	26.5	1	4
D113659	490,939	7,801,214	9.0	1.2	0.579	24.8	20.0	2	3
D113661	490,929	7,801,276	8.8	1.4	0.587	25.7	22.6	-	4
D113662	490,931	7,801,319	8.6	1.4	0.552	25.9	20.3	3	1
D113663	490,936	7,801,381	8.4	0.7	0.602	24.8	22.6	-	1
D113664	491,131	7,801,361	6.5	0.6	0.596	20.9	13.7	-	3
D113665	491,140	7,801,315	7.2	-	0.513	21.0	15.3	1	-
D113666	491,143	7,801,271	6.7	0.8	0.531	25.5	22.8	-	3
D113667	491,137	7,801,224	6.9	0.8	0.531	21.2	18.4	2	2
D113668	491,132	7,801,119	5.8	1.8	0.497	22.3	16.5	1	5
D113669	491,129	7,801,072	7.7	0.9	0.524	24.9	31.2	2	-
D113670	491,135	7,800,960	8.5	2.0	0.531	22.7	26.4	2	-
D113671	491,122	7,800,916	8.9	1.3	0.581	23.8	25.3	1	-
D113672	491,136	7,800,853	7.6	1.4	0.542	23.0	19.4	2	6
D113673	491,136	7,800,815	7.2	1.4	0.510	21.8	15.5	3	-
D113674	491,118	7,800,770	7.4	0.7	0.570	19.0	18.3	2	4
D113675	491,540	7,800,772	9.5	1.4	0.687	25.2	26.4	1	-
D113677	491,566	7,800,739	9.5	1.3	0.669	31.9	27.2	3	4
D113678	491,541	7,800,814	8.5	-	0.612	26.1	23.4	1	5
D113679	491,537	7,800,865	8.1	1.2	0.680	28.1	22.0	2	5
D113680	491,539	7,800,913	10.2	1.4	0.742	24.3	23.4	-	1
D113681	491,545	7,800,962	8.2	2.8	0.635	23.7	18.6	1	1
D113682	491,513	7,801,030	8.0	1.9	0.822	52.1	27.3	1	1

New Regional Geology Model \& Targets - Coyote

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D113683	491,555	7,801,064	12.8	1.3	0.867	31.8	21.0	2	2
D113684	491,535	7,801,116	12.3	1.2	0.666	35.4	26.0	1	2
D113685	491,539	7,801,165	10.9	1.0	0.648	30.3	17.5	1	3
D113686	491,538	7,801,217	13.1	1.4	0.733	33.3	22.0	2	4
D113687	491,542	7,801,267	9.8	2.3	0.523	28.9	23.3	-	1
D113688	491,536	7,801,316	9.6	1.6	0.691	31.5	31.5	2	1
D113689	491,542	7,801,362	10.2	1.3	0.807	32.2	31.6	2	6
D113691	491,941	7,801,368	8.5	0.7	0.604	30.3	29.0	-	4
D113692	491,933	7,801,310	11.1	1.1	0.769	40.9	28.8	3	-
D113693	491,934	7,801,264	9.0	1.9	0.658	33.4	27.3	2	3
D113694	491,931	7,801,213	8.5	0.9	0.775	25.5	23.2	2	5
D113695	491,944	7,801,166	9.6	2.8	0.886	28.1	17.8	2	4
D113696	491,950	7,801,123	9.5	1.3	0.827	26.0	26.3	-	-
D113697	491,935	7,801,069	8.1	2.0	0.738	28.9	28.3	2	3
D113698	491,941	7,801,025	8.6	1.2	0.776	24.6	23.7	2	4
D113699	491,944	7,800,961	9.1	2.1	0.794	34.4	26.7	2	1
D113701	491,939	7,800,920	10.1	1.5	0.905	27.7	21.7	2	2
D113702	491,937	7,800,872	11.6	1.7	0.843	24.8	23.1	1	2
D113703	491,944	7,800,839	10.5	1.8	0.950	24.8	24.5	2	4
D113704	491,947	7,800,768	8.1	1.0	0.656	22.2	19.3	-	3
D113705	491,934	7,800,735	8.8	2.4	0.685	23.0	20.2	3	5
D113706	492,537	7,800,715	8.7	2.0	0.732	25.0	21.1	1	1
D113707	492,533	7,800,663	7.9	2.0	0.520	27.0	18.7	2	3
D113708	492,534	7,800,771	8.6	1.7	0.702	23.7	19.5	1	2
D113709	492,540	7,800,824	9.2	1.5	0.739	26.4	28.5	2	3
D113710	492,546	7,800,867	9.1	0.9	0.676	23.9	20.6	2	2
D113711	492,541	7,800,914	8.8	1.3	0.608	31.5	27.4	2	1
D113712	492,547	7,800,964	8.8	1.2	0.724	25.5	22.5	1	2
D113713	492,545	7,801,015	10.0	1.7	0.674	28.1	32.5	2	2
D113714	492,523	7,801,064	7.9	2.0	0.610	25.0	21.6	2	1
D113715	492,527	7,801,113	9.4	1.7	0.668	25.9	24.5	-	4
D113716	492,541	7,801,163	13.1	1.7	1.100	45.1	37.3	-	3
D113717	492,532	7,801,215	9.0	1.3	0.635	20.9	22.8	-	4
D113718	492,523	7,801,271	9.2	-	0.718	25.3	19.9	2	3
D113719	492,538	7,801,315	7.4	2.0	0.638	22.1	20.3	-	2
D113720	492,531	7,801,364	9.5	-	0.727	21.0	23.9	2	2
D113721	492,346	7,801,365	7.5	2.0	0.895	34.9	20.1	3	6
D113722	492,147	7,801,366	10.5	2.0	0.815	42.5	31.9	-	5
D113723	492,138	7,801,213	8.5	1.2	0.712	21.5	18.2	3	2
D113724	492,151	7,801,266	8.8	1.9	0.740	36.8	30.6	-	1
D113725	492,150	7,801,165	10.9	0.9	0.825	24.4	21.8	2	4
D113727	492,147	7,801,116	7.6	1.8	0.540	48.5	39.9	-	1
D113728	492,139	7,801,076	9.6	1.3	0.884	28.2	25.2	3	2
D113729	492,147	7,801,027	8.5	1.8	0.794	31.2	22.8	-	2
D113731	492,144	7,800,968	10.0	0.9	0.754	31.3	24.3	2	1
D113732	492,153	7,800,919	8.2	1.4	0.541	47.3	28.5	2	-
D113733	492,152	7,800,867	10.0	2.6	0.846	24.8	21.8	-	1
D113734	492,152	7,800,823	11.0	1.1	0.679	27.6	24.6	2	4
D113735	492,157	7,800,758	9.7	3.0	0.636	26.6	23.3	2	-
D113736	492,109	7,800,717	8.6	2.7	0.570	25.5	29.1	3	2
D113737	492,936	7,800,623	8.7	0.5	0.569	23.7	20.9	2	3
D113738	492,948	7,800,673	8.1	1.2	0.532	23.7	23.0	3	1
D113739	492,936	7,800,724	6.5	0.8	0.573	18.8	18.5	-	3
D113740	492,943	7,800,769	7.2	2.4	0.515	21.0	19.1	2	2
D113741	492,931	7,800,826	8.1	2.5	0.536	20.4	22.0	3	-
D113742	492,944	7,800,868	7.0	2.3	0.522	20.5	18.2	2	-
D113743	492,957	7,800,921	7.0	1.5	0.457	19.7	21.3	-	-
D113744	492,933	7,800,959	8.2	1.0	0.523	23.0	22.4	2	2
D113745	492,938	7,801,024	7.2	2.6	0.462	20.5	20.4	2	4

New Regional Geology Model \& Targets - Coyote

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	$\mathrm{Cu}(\mathrm{ppm})$	Ni(ppm)	Pt(ppb)	Pd(ppb)
D113746	492,941	7,801,125	7.7	2.0	0.528	22.6	21.2	1	1
D113747	492,934	7,801,175	6.9	1.9	0.513	20.1	19.6	-	-
D113748	492,946	7,801,271	8.2	-	0.671	27.0	30.7	-	1
D113749	492,937	7,801,315	7.1	1.5	0.589	24.7	21.3	-	1
D113751	492,947	7,801,369	9.2	1.2	0.537	27.8	22.6	2	2
D113752	493,134	7,801,379	8.1	0.8	0.437	24.6	24.8	1	2
D113753	493,136	7,801,324	7.9	0.8	0.565	21.2	18.3	3	-
D113754	493,159	7,801,276	8.6	2.1	0.651	25.1	26.3	1	3
D113755	493,141	7,801,222	9.3	1.4	0.569	24.4	20.3	1	2
D113756	493,138	7,801,174	10.2	2.8	0.612	24.6	26.3	1	-
D113757	493,131	7,801,112	9.7	1.6	0.534	21.9	20.7	-	-
D113758	493,130	7,801,072	7.4	1.1	0.546	22.2	15.4	2	3
D113759	493,134	7,800,970	9.2	1.6	0.563	22.1	17.8	2	-
D113761	493,140	7,800,918	10.3	2.3	0.585	25.4	21.9	1	3
D113762	493,147	7,800,861	11.3	2.1	0.688	26.8	24.0	3	2
D113763	493,141	7,800,812	11.8	1.8	0.782	25.5	23.3	2	-
D113764	493,135	7,800,761	11.2	1.4	0.607	36.9	29.8	2	3
D113765	493,143	7,800,720	8.8	1.2	0.680	29.1	26.0	3	2
D113766	493,134	7,800,680	9.3	1.1	0.624	27.5	27.5	3	-
D113767	493,128	7,800,616	9.0	1.2	0.715	23.1	25.3	2	3
D113785	493,932	7,780,192	9.3	1.0	0.614	16.0	13.3	1	2
D113786	493,888	7,780,193	11.0	1.8	0.575	22.4	21.3	3	5
D113787	493,834	7,780,192	8.6	2.0	0.539	20.5	18.0	-	3
D113788	493,787	7,780,189	9.2	2.1	0.604	19.3	16.9	1	3
D113789	493,740	7,780,197	12.2	2.1	0.627	25.3	32.2	2	5
D113791	493,686	7,780,192	9.3	1.4	0.545	22.1	22.2	1	-
D113792	493,638	7,780,192	9.7	2.2	0.583	19.5	19.9	-	2
D113793	493,592	7,780,205	10.9	5.1	0.685	21.8	16.4	2	3
D113794	493,536	7,780,192	10.1	3.2	0.536	23.9	25.8	2	-
D113795	493,488	7,780,190	7.7	1.1	0.653	15.9	12.5	2	4
D113796	493,439	7,780,197	8.3	1.6	0.547	20.1	15.1	2	2
D113797	493,387	7,780,200	9.0	1.5	0.546	21.6	19.2	-	2
D113798	493,341	7,780,195	9.1	1.6	0.625	18.4	17.9	2	5
D113799	493,288	7,780,202	6.5	1.6	0.496	17.2	18.7	1	4
D113801	493,235	7,780,196	6.6	0.6	0.386	16.7	12.9	2	1
D113802	493,185	7,780,200	8.4	0.8	0.506	16.6	18.5	2	2
D113803	493,132	7,780,199	7.5	2.0	0.589	17.8	21.3	1	3
D113804	493,087	7,780,197	8.1	2.4	0.450	20.0	20.0	1	6
D113805	493,041	7,780,198	9.7	2.1	0.509	21.0	27.1	-	6
D113806	492,991	7,780,200	7.9	2.6	0.515	20.2	26.4	2	7
D113807	492,936	7,780,188	8.2	2.0	0.455	21.3	25.7	1	2
D113808	492,885	7,780,186	7.0	2.3	0.514	18.0	22.9	2	6
D113809	492,840	7,780,195	6.5	1.8	0.496	17.6	18.5	2	4
D113810	492,788	7,780,200	6.9	0.9	0.460	15.1	14.2	-	4
D113811	492,740	7,780,197	7.2	1.7	0.436	18.7	18.0	1	2
D113812	492,693	7,780,200	7.5	1.5	0.526	19.1	22.4	1	2
D113813	492,637	7,780,198	8.1	2.0	0.486	17.8	19.2	-	7
D113814	492,587	7,780,192	8.1	1.5	0.505	18.5	19.0	-	6
D113815	492,537	7,780,198	7.9	0.9	0.471	18.9	16.0	1	4
D113816	492,488	7,780,196	8.3	0.8	0.540	18.5	22.5	-	3
D113817	492,443	7,780,196	8.0	2.0	0.455	23.3	19.4	1	4
D113818	492,389	7,780,205	7.7	1.0	0.496	17.0	18.2	-	5
D113819	492,341	7,780,198	7.7	0.7	0.618	16.2	17.1	-	6
D113881	491,683	7,778,997	7.4	1.1	0.645	20.9	22.2	-	3
D113882	491,730	7,778,996	9.6	1.5	0.590	26.5	30.2	1	3
D113883	491,786	7,778,994	9.6	1.0	0.561	27.8	28.0	-	3
D113884	491,837	7,779,000	10.3	0.9	0.565	31.5	31.0	2	4
D113885	491,888	7,778,988	9.4	2.4	0.488	29.8	27.8	2	5
D113886	491,932	7,778,994	10.7	1.3	0.596	28.5	31.0	-	4

New Regional Geology Model \& Targets - Coyote

Sample ID	Easting	Northing	As (ppm)	Au(ppb)	Bi(ppm)	Cu(ppm)	Ni(ppm)	Pt(ppb)	Pd(ppb)
D113887	491,985	7,778,997	13.2	1.9	0.513	32.5	31.7	1	2
D113888	492,044	7,779,001	17.9	0.8	0.524	32.4	44.5	1	4
D113889	492,089	7,778,991	23.1	1.4	0.620	43.3	42.0	3	8
D113891	492,138	7,778,992	17.8	1.0	0.609	33.2	38.4	1	5
D113892	492,184	7,778,998	12.8	0.5	0.567	19.9	15.9	-	5
D113893	492,237	7,778,994	8.8	1.6	0.558	21.0	18.5	2	4
D113894	492,285	7,778,994	9.8	1.6	0.589	19.9	19.6	1	5
D113895	492,334	7,778,996	10.5	0.6	0.486	20.5	20.3	-	6
D113896	492,383	7,779,004	10.2	2.2	0.578	20.6	18.2	1	6
D113897	492,433	7,778,993	11.6	0.8	0.667	21.2	22.9	-	6
D113898	492,485	7,778,991	13.3	1.2	0.689	23.9	23.4	2	8
D113927	491,234	7,779,391	7.9	2.5	0.487	17.7	21.0	2	5
D113928	491,185	7,779,392	8.6	2.4	0.502	15.9	20.9	-	6
D113929	491,141	7,779,404	6.9	3.2	0.474	16.8	18.6	2	6
D113931	491,087	7,779,383	6.4	2.0	0.480	14.3	16.5	-	3
D113932	491,043	7,779,406	8.0	2.4	0.486	17.5	22.3	-	8
D113933	490,985	7,779,387	7.7	2.5	0.483	16.8	21.1	-	3
D113934	490,935	7,779,384	7.7	1.4	0.504	18.5	24.0	3	6
D113935	490,893	7,779,401	7.4	1.8	0.467	18.5	24.3	1	7
D113936	490,834	7,779,394	7.4	1.6	0.520	15.6	19.4	1	3
D113937	490,839	7,778,995	8.7	2.6	0.551	16.9	16.3	-	2
D113938	490,885	7,778,995	8.8	1.8	0.557	20.3	24.1	3	5
D113939	490,927	7,779,003	8.5	2.5	0.547	19.4	24.4	-	4
D113940	490,992	7,779,002	6.5	2.0	0.503	18.5	22.1	-	7
D113941	491,030	7,778,994	7.0	3.6	0.516	17.0	15.6	-	5
D113942	491,084	7,778,992	7.8	3.5	0.516	19.4	25.8	2	4
D113943	491,133	7,778,986	6.8	2.6	0.498	17.3	17.6	1	7
D113944	491,177	7,778,994	6.9	2.0	0.502	17.9	20.2	-	4
D113945	491,242	7,778,987	6.7	1.1	0.520	19.1	17.9	2	4
D113946	491,287	7,778,998	7.4	2.0	0.514	18.8	22.0	2	5
D113947	491,335	7,778,987	8.1	1.4	0.574	22.1	25.9	2	3
D113948	491,383	7,778,993	8.9	1.6	0.582	23.1	22.7	1	4
D113949	491,434	7,778,997	8.8	2.1	0.607	22.4	23.1	2	8
D113951	491,490	7,779,004	8.6	2.6	0.591	23.7	22.6	2	5
D113952	491,539	7,778,999	9.8	1.7	0.597	24.6	27.6	2	5
D113953	491,581	7,778,990	8.9	1.4	0.538	23.8	33.2	2	5
D113954	491,630	7,778,995	8.7	1.8	0.594	22.8	23.4	-	6
D113955	490,836	7,779,794	8.3	2.1	0.541	16.4	22.3	1	7
D113956	490,879	7,779,785	8.0	0.9	0.492	17.6	23.0	-	8
D113957	490,929	7,779,788	7.8	0.9	0.492	16.0	21.0	-	6
D113958	490,985	7,779,793	7.3	0.9	0.534	19.2	19.8	-	3
D113959	491,043	7,779,789	8.9	2.7	0.530	21.9	27.7	4	6
D113961	491,084	7,779,792	8.3	3.5	0.551	19.0	21.8	2	4
D113962	491,132	7,779,796	8.0	2.0	0.553	17.9	16.4	-	3
D113963	491,184	7,779,788	7.2	1.8	0.500	18.3	19.6	2	5
D113964	491,235	7,779,796	8.6	1.0	0.498	17.1	19.9	3	7

- Note: a "-" symbol denotes below detection limit. Detection limits are: As 0.5ppm, Au 0.5ppb, Bi 0.002ppm, Cu 0.1ppm, Ni 0.2ppm, Pt 1ppb, Pd 1ppb

ABOUT BLACK CAT SYNDICATE (ASX: BC8)

Key pillars are in place for Black Cat to become a multi operation gold producer at its three 100% owned operations. The three operations are:

Paulsens Gold Operation: Paulsens is located 180km west of Paraburdoo in WA. Paulsens consists of an underground mine, 450ktpa processing facility, 128 person camp, numerous potential open pits and other related infrastructure. The operation is currently on care and maintenance, has a Resource of 4.4 Mt @ $3.9 \mathrm{~g} / \mathrm{t}$ Au for 549 koz and significant exploration and growth potential.
Coyote Gold Operation: Coyote is located in Northern Australia, $\sim 20 \mathrm{~km}$ on the WA side of the WA/NT border, on the Tanami Highway. There is a well-maintained airstrip on site that is widely used by government and private enterprises. Coyote consists of an open pit and an underground mine, 300 ktpa processing facility, +180 person camp and other related infrastructure. The operation is currently on care and maintenance and has a Resource of $3.7 \mathrm{Mt} @ 5.5 \mathrm{~g} / \mathrm{t}$ Au for 645 koz with numerous high-grade targets in the surrounding area.
Kal East Gold Project: comprises $\sim 1,015 \mathrm{~km}^{2}$ of highly prospective ground to the east of the world class mining centre of Kalgoorlie, WA. Kal East contains a Resource of $18.8 \mathrm{Mt} @ 2.1 \mathrm{~g} / \mathrm{t}$ Au for $1,294 \mathrm{koz}$, including a preliminary JORC 2012 Reserve of $3.7 \mathrm{Mt} @$ $2.0 \mathrm{~g} / \mathrm{t}$ Au for 243koz.

Black Cat plans to construct a central processing facility near the Majestic deposit, $\sim 50 \mathrm{~km}$ east of Kalgoorlie. The 800ktpa processing facility will be a traditional carbon-in-leach gold processing facility which is ideally suited to Black Cat's Resources as well as to third party free milling ores located around Kalgoorlie.

APPENDIX A - JORC 2012 GOLD RESOURCE TABLE - BLACK CAT (100\% OWNED)

Mining Centre		Measured Resource			Indicated Resource			Inferred Resource			Total Resource		
		$\begin{array}{\|l} \text { Tonnes } \\ \text { ('000) } \end{array}$	Grade (g/t Au)	$\begin{gathered} \text { Metal } \\ (000 \mathrm{oz}) \end{gathered}$	Tonnes ('000)	Grade ($\mathrm{g} / \mathrm{t} \mathrm{Au}$)	$\begin{gathered} \text { Metal } \\ \text { ('000 oz) } \end{gathered}$	Tonnes ('000)	Grade ($\mathrm{g} / \mathrm{t} \mathrm{Au}$)	$\begin{gathered} \text { Metal } \\ \text { ('000 oz) } \end{gathered}$	Tonnes ('000)	Grade ($\mathrm{g} / \mathrm{t} \mathrm{Au}$)	$\begin{array}{\|c} \text { Metal } \\ \text { ('000 oz) } \end{array}$
Kal East													
Bulong	Open Pit	-	-	-	1,000	2.7	86	1,380	1.8	79	2,380	2.1	164
	Underground	-	-	-	230	4.6	34	937	3.5	107	1,167	3.8	141
	Sub Total	-	-	-	1,230	3.0	120	2,316	2.5	185	3,546	2.7	305
Mt Monger	Open Pit	13	3.2	1	7,198	1.8	407	6,044	1.5	291	13,253	1.6	699
	Underground	-	-	-	1,178	4.5	169	710	4.6	104	1,888	4.5	274
	Sub Total	-	-	-	8,375	2.1	576	6,754	1.8	395	15,142	2.0	972
Rowes Find	Open Pit	-	-	-	-	-	-	148	3.6	17	148	3.6	17
Kal East Resource		13	3.2	1	9,605	2.3	696	9,219	2.0	597	18,836	2.1	1,294

Coyote Gold Operation

Coyote Central	Open Pit	-	-	-	608	2.8	55	203	3.0	19	811	2.9	75
	Underground	-	-	-	240	23.4	181	516	10.5	175	757	14.6	356
	Sub Total	-	-	-	849	8.7	236	719	8.4	194	1,568	8.5	430
Bald Hill	Open Pit	-	-	-	560	2.8	51	613	3.2	63	1,174	3.0	114
	Underground	-	-	-	34	2.7	3	513	5.0	82	547	4.8	84
	Sub Total	-	-	-	594	2.8	54	1,126	4.0	145	1,721	3.6	198
Stockpiles		-	-	-	375	1.4	17	-	-	-	375	1.4	17
Coyote Resource		-	-	-	1,818	5.3	307	1,845	5.7	339	3,664	5.5	645

Paulsens Gold Operation

Paulsens	Underground	159	10.8	55	827	9.6	254	348	8.6	97	1,334	9.5	406
	Stockpile	11	1.6	1	-	-	-	-	-	-	11	1.6	1
	Sub Total	170	10.2	56	827	9.6	254	348	8.6	97	1,345	9.4	407
Mt Clement	Open Pit	-	-	-	-	-	-	1,249	1.5	61	1,249	1.5	61
	Underground	-	-	-	-	-	-	492	0.3	5	492	0.3	5
	Sub Total	-	-	-	-	-	-	1,741	1.2	66	1,741	1.2	66
Belvedere	Underground	-	-	-	95	5.9	18	44	8.3	12	139	6.6	30
Northern Anticline	Open Pit	-	-	-	-	-	-	523	1.4	24	523	1.4	24
Electric Dingo	Open Pit	-	-	-	98	1.6	5	444	1.2	17	542	1.3	22
Paulsens Resource		170	10.2	56	1,019	8.4	277	3,100	2.2	216	4,289	4.0	548
TOTAL Resource		183	9.7	57	12,442	3.2	1,280	14,164	2.5	1,152	26,789	2.9	2,488

1. The preceding statements of Mineral Resources conforms to the 'Australasian Code for Reporting of Exploration Results Mineral Resources and Ore Reserves (JORC Code) 2012 Edition'.
2. All tonnages reported are dry metric tonnes.
3. Data is rounded to thousands of tonnes and thousands of ounces gold. Discrepancies in totals may occur due to rounding.
4. Resources have been reported as both open pit and underground with varying cut-offs based off several factors discussed in the corresponding Table 1 which can be found with the original ASX announcements for each Resource.
5. Resources are reported inclusive of any Reserves.
6. Paulsens Inferred Resource includes Mt Clement Eastern Zone Au of $7 \mathrm{koz} @ 0.3 \mathrm{~g} / \mathrm{t}$ Au accounting for lower grades reported.

The announcements containing the Table 1 Checklists of Assessment and Reporting Criteria relating for the 2012 JORC compliant Resources are: Kal East Gold Project

- Boundary - Black Cat ASX announcement on 9 October 2020 "Strong Resource Growth Continues including 53\% Increase at Fingals Fortune"
- Trump - Black Cat ASX announcement on 9 October 2020 "Strong Resource Growth Continues including 53\% Increase at Fingals Fortune"
- Myhree - Black Cat ASX announcement on 9 October 2020 "Strong Resource Growth Continues including 53\% Increase at Fingals Fortune"
- Strathfield - Black Cat ASX announcement on 31 March 2020 "Bulong Resource Jumps by 21% to 294,000 oz"
- Majestic - Black Cat ASX announcement on 25 January 2022 "Majestic Resource Growth and Works Approval Granted"
- Sovereign - Black Cat ASX announcement on 11 March 2021 " 1 Million Oz in Resource \& New Gold Targets"
- Imperial - Black Cat ASX announcement on 11 March 2021 " 1 Million Oz in Resource \& New Gold Targets"
- Jones Find - Black Cat ASX announcement 04 March 2022 "Resource Growth Continues at Jones Find"
- Crown - Black Cat ASX announcement on 02 September 2021 "Maiden Resources Grow Kal East to 1.2Moz"
- Fingals Fortune - Black Cat ASX announcement on 23 November 2021 "Upgraded Resource Delivers More Gold at Fingals Fortune"
- Fingals East - Black Cat ASX announcement on 31 May 2021 "Strong Resource Growth Continues at Fingals".
- Trojan - Black Cat ASX announcement on 7 October 2020 "Black Cat Acquisition adds 115,000 oz to the Fingals Gold Project".
- Queen Margaret - Black Cat ASX announcement on 18 February 2019 "Robust Maiden Mineral Resource Estimate at Bulong"
- Melbourne United - Black Cat ASX announcement on 18 February 2019 "Robust Maiden Mineral Resource Estimate at Bulong"
- Anomaly 38 - Black Cat ASX announcement on 31 March 2020 "Bulong Resource Jumps by 21% to 294,000 oz"
- Wombola Dam - Black Cat ASX announcement on 28 May 2020 "Significant Increase in Resources - Strategic Transaction with Silver Lake"
- Hammer and Tap - Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources"
- Rowe's Find - Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources"

Coyote Gold Operation

- Coyote OP\&UG - Black Cat ASX announcement on 16 January 2022 "Coyote Underground Resource increases to $356 \mathrm{koz} @ 14.6 \mathrm{~g} / \mathrm{t}$ Au - One of the highest-grade deposits in Australia"
- Sandpiper OP\&UG - Black Cat ASX announcement on 25 May 2022 "Coyote \& Paulsens High-Grade JORC Resources Confirmed"
- Kookaburra OP - Black Cat ASX announcement on 25 May 2022 "Coyote \& Paulsens High-Grade JORC Resources Confirmed"
- Pebbles OP - Black Cat ASX announcement on 25 May 2022 "Coyote \& Paulsens High-Grade JORC Resources Confirmed"
- Stockpiles SP (Coyote) - Black Cat ASX announcement on 25 May 2022 "Coyote \& Paulsens High-Grade JORC Resources Confirmed"

Paulsens Gold Operation

- Paulsens UG - Black Cat ASX announcement on 31 October 2023 " 24% Resource Increase, Paulsens Underground - 406koz @ 9.5g/t Au"
- Paulsens SP - Black Cat ASX announcement on 19 April 2022 "Funded Acquisition of Coyote \& Paulsens Gold Operations - Supporting Documents"
- Belvedere UG - Black Cat ASX announcement on 21 November 2023 "Enhanced Restart Plan for Paulsens"
- Mt Clement - Black Cat ASX announcement on 24 November 2022 "High-Grade Au-Cu-Sb-Ag-Pb Resource at Paulsens"
- Merlin - Black Cat ASX announcement on 25 May 2022 "Coyote \& Paulsens High-Grade JORC Resources Confirmed"
- Electric Dingo - Black Cat ASX announcement on 25 May 2022 "Coyote \& Paulsens High-Grade JORC Resources Confirmed

APPENDIX B - JORC 2012 POLYMETALLIC RESOURCES - BLACK CAT (100\% OWNED)

Deposit	Resource Category	$\begin{aligned} & \text { Tonnes } \\ & (, 000 \mathrm{t}) \end{aligned}$	Grade					Contained Metal				
			$\mathrm{Au}(\mathrm{g} / \mathrm{t})$	$\mathrm{Cu}(\%)$	Sb (\%)	$\mathrm{Ag}(\mathrm{g} / \mathrm{t})$	Pb (\%)	Au (koz)	$\mathrm{Cu}(\mathrm{kt})$	Sb (kt)	Ag (koz)	$\mathrm{Pb}(\mathrm{kt})$
Western	Inferred	415	-	0.4	0.2	76.9	-	*	1.6	0.7	1,026	-
	Total	415	-	0.4	0.2	76.9	-	*	1.6	0.7	1,026	-
Central	Inferred	532	-	-	-	-	-	*	-	-	-	-
	Total	532	-	-	-	-	-	*	-	-	-	-
Eastern	Inferred	794	-	-	1.7	17.0	2.4	*	-	13.2	434	18.7
	Total	794	-	-	1.7	17.0	2.4	*	-	13.2	434	18.7
Total		1,741	-	-	-	-	-	*	1.6	13.9	1,460	18.7

Notes on Resources:

1. The preceding statements of Mineral Resources conforms to the 'Australasian Code for Reporting of Exploration Results Mineral Resources and Ore Reserves (JORC Code) 2012 Edition'.
2. All tonnages reported are dry metric tonnes.
3. Data is rounded to thousands of tonnes and thousands of ounces/tonnes for copper, antimony, silver, and lead. Discrepancies in totals may occur due to rounding.
4. Resources have been reported as both open pit and underground with varying cut-offs based off several factors discussed in the corresponding Table 1 which can be found with the original ASX announcements for each Resource.
5. Resources are reported inclusive of any Reserves.
6. Gold is reported in the previous table for Mt Clement, and so is not reported here. A total of 66koz of gold is contained within the Mt Clement Resource.

The announcements containing the Table 1 Checklists of Assessment and Reporting Criteria relating for the 2012 JORC compliant Reserves are:

Paulsens Gold Operation

- Mt Clement - Black Cat ASX announcement on 24 November 2022 "High-Grade Au-Cu-Sb-Ag-Pb Resource at Paulsens"

APPENDIX C - JORC 2012 GOLD RESERVE TABLE - BLACK CAT (100\% OWNED)

	Proven Reserve			Probable Reserve			Total Reserve		
	Tonnes ('000s)	Grade (g/t Au)	$\begin{aligned} & \text { Metal } \\ & \text { (000s oz) } \end{aligned}$	Tonnes ('000s)	Grade ($\mathrm{g} / \mathrm{t} \mathrm{Au}$)	$\begin{aligned} & \text { Metal } \\ & \text { (000s oz) } \end{aligned}$	Tonnes ('000s)	Grade (g/t Au)	$\begin{aligned} & \text { Metal } \\ & \text { ('000s oz) } \end{aligned}$
Kal East									
Open Pit	-	-	-	3,288	1.8	193	3,288	1.8	193
Underground	-	-	-	437	3.6	50	437	3.6	50
Kal East Reserve	-	-	-	3,725	2.0	243	3,725	2.0	243

Paulsens Gold Operation

Underground	93	4.5	14	537	$\mathbf{4 . 3}$	$\mathbf{7 4}$	$\mathbf{6 3 1}$	$\mathbf{4 . 3}$	$\mathbf{8 7}$
Paulsens Reserve	93	4.5	14	537	4.3	$\mathbf{7 4}$	$\mathbf{6 3 1}$	$\mathbf{4 . 3}$	$\mathbf{8 7}$
TOTAL Reserves	93	4.5	$\mathbf{1 4}$	$\mathbf{4 , 2 6 2}$	$\mathbf{2 . 3}$	$\mathbf{3 1 7}$	$\mathbf{4 , 3 5 6}$	$\mathbf{2 . 4}$	$\mathbf{3 3 0}$

Notes on Reserve:

1. The preceding statements of Mineral Reserves conforms to the 'Australasian Code for Reporting of Exploration Results Mineral Resources and Ore Reserves (JORC Code) 2012 Edition'.
2. All tonnages reported are dry metric tonnes.
3. Data is rounded to thousands of tonnes and thousands of ounces gold. Discrepancies in totals may occur due to rounding.
4. Cut-off Grade:

- Open Pit - The Ore Reserves are based upon an internal cut-off grade greater than or equal to the break-even cut-off grade.
- Underground - The Ore Reserves are based upon an internal cut-off grade greater than the break-even cut-off grade.

5. The commodity price used for the Revenue calculations for Kal East was AUD $\$ 2,300$ per ounce.
6. The commodity price used for the Revenue calculations for Paulsens was AUD $\$ 2,500$ per ounce.
7. The Ore Reserves are based upon a State Royalty of 2.5% and a refining charge of 0.2%.

The announcements containing the Table 1 Checklists of Assessment and Reporting Criteria relating for the 2012 JORC compliant Reserves are:
Kal East Gold Project

- Black Cat ASX announcement on 03 June 2022 "Robust Base Case Production Plan of 302koz for Kal East"

Paulsens Gold Operation

- Black Cat ASX announcement on 10 July 2023 "Robust Restart Plan for Paulsens"

APPENDIX D -JORC TABLE 1

Section 1: Sampling Techniques and Data

Criteria

Sampling techniques

Include reference to measures taken to ensure sample representivity and the
appropriate calibration of any measurement tools or systems used.
Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems.
Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.
Jorc Code Explanation
Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industy standard measurement tools appropriate to the minerals under investigation, should not be gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling

Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	No drill results are reported
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	No drill results are reported
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	No drill results are reported
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No drill results are reported
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	No drill results are reported
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	No drill results are reported
	The total length and percentage of the relevant intersections logged.	No drill results are reported
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	No drill results are reported
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	No drill results are reported
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation was undertaken at a commercial laboratory.

Criteria	JORC Code Explanation	Commentary	
		UFF analysis (termite mound samples): the <2um fraction was separated from the sample using water as a dispersant. The clay fraction was digested in aqua regia under high pressure and temperature using a microwave apparatus as a total digest method. Samples were then analysed using ICP-MS and ICP-OES methods. Biogeochemical samples: complete sample decomposition was achieved under high temperature and pressure using a microwave digestion technique and the samples were analysed using conventional ICP-MS and ICP-PES methods.	
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Laboratory and blind standards were used as part of the QAQC process, and results compared with standard values. For UFF analysis, company standards underwent the same sample prep as submitted samples.	
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second half sampling.	Field duplicates were not submitted as part of this study.	
	Whether sample sizes are appropriate to the grain size of the material being sampled.	$\sim 200 \mathrm{~g}$ termite mound samples were collected and submitted to the laboratory. $\sim 250-300 \mathrm{~g}$ samples of spinifex needles were collected for analysis.	
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Aqua regia digestion is considered total digestion. All samples were analysed via standard commercial ICP-MS and ICPOES methods.	
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Seismic data was collected in 2005 by Terrex Seismic Pty Ltd under contract to Geoscience Australia. The seismic system used consisted of a 240 channel ARAM 24 -bit seismic recording system with 10 Hz geophones and three $60,000 \mathrm{lb}$ Vibroseis trucks. The source and receiver parameters are as follows:	
		Source Type	3 lVI Hemi-60 vibrators
		Sweep frequencies	$8-64 \mathrm{~Hz}, 12-90 \mathrm{~Hz}, 10-76 \mathrm{~Hz}$
		Source spacing	15m
		VP interval	80m
		Group interval	40m
		Group pattern	1210 Hz phones in line with 3.33 m spacing
		Channels	240 active
		Seismic data processing was undertaken by Geoscience Australia as described in Jones, J.E.A, Johnstone, D.W., Barton, T., Fomin, T. 2005. L171 Tanami 2D Seismic Survey, WA, NT, 2005 Stacked and Migrated Seismic data and Images for Lines 05GA-T1, 05GA-T2, 05GA-T3, and 05GA-T4. Geoscience Australia, Canberra.	
		Re-imaging in 2023 consisted of trimming the data to the area of interest and depth converted using the Geoscience Australia velocity model and a series of TIFF plots were generated. A series of seismic attributes were calculated including pseudorelief, which is applied on seismic data to create a more consistent image for easier interpretation of structural breaks and horizons To generate a pseudorelief image, the energy attribute is first calculated and then a Hilbert transform is applied.	
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Standards were submitted for analysis at a frequency of 1:50 and results compared with published results. All standards used were low value standards, similar to what was expected from the samples. No obvious bias was noted in the standards data. Blanks and field duplicates were not submitted as field checks.	
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Only raw data is reported, and no composite intersections are reported.	
	The use of twinned holes.	No drill results are reported	
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Field data, including location, termite mound height and spinifex species was recorded using an Excel spreadsheet on a portable tablet device.	
	Discuss any adjustment to assay data.	Assay data has not been adjusted	
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	All sample locations were recorded using a hand-held Garmin GPS with an accuracy of $+/-3 \mathrm{~m}$	
	Specification of the grid system used.	All sample locations are reported using the MGA94Z52 datum	
	Quality and adequacy of topographic control.	Regional topographic control is based on a Lidar survey conducted in 2022 across all Black Cat tenements in the West Tanami.	

[^0]: ${ }^{1}$ ASX announcement 18 July 2023
 ${ }^{2}$ ASX announcement 10 October 2022
 ${ }^{3}$ Gremliln RC-DD EIS Funded Drilling Report 2020. GSWA Report A122332.
 ${ }^{4}$ Reid, N; Hill, S.M. and Lewis, D.M "Spinifex biogeochemical expressions of buried gold mineralization: The great mineral exploration penetrator of transported regolith. Applied Geochemistry, V23, p. 76-84
 ${ }_{6}^{5}$ See Appendix D of this release for details
 6 WA Exploration Geochemistry Online Database: "Billiluna Map Sheet Vegetation Samples" Surface assays - Western Australia Exploration Geochemistry Online (wamexgeochem.net.au)

