

TSXV:BZ, ASX: BNZ

13 February 2024

RUBY HILL WEST 2023 DRILL RESULTS

HIGHLIGHTS

- Results confirm that a significant LCT pegmatite system is present at the Ruby Hill West property. Highlights include:
 - o 19.5m at 1.13% Li₂O from surface (trench sample)
 - **11.1m at 0.56% Li₂O** from 29.8m
 - o **10.7m at 0.67% Li₂O** from 102.3m
 - o 5.5m at 0.76% Li₂O from surface (trench sample)
 - 5.01 at 0.95% Li₂O from surface (trench sample)
- Multiple thick LCT pegmatite intersections showing highly fractioned/fertile indicators (K/Rb ratios <50, Mg/Li ratios <10, Nb/Ta ratios <8)
- Pegmatites show evidence of internal zoning creating discrete spodumene rich zones
- Very high-grade tantalum, rubidium and caesium association
- 25km prospective lithium trend remains open for new discoveries

Benz Mining Corp. (TSXV:BZ, ASX:BNZ) (the **Company** or **Benz**) is pleased to provide an update on its lithium exploration activities. Drilling on the Ruby Hill West (**RHW**) and Mikisiw pegmatite targets concluded in early November 2023 and results have now been received and interpreted. The drill program consisted of 19 holes for 2,940.7m via a single helicopter supported diamond rig. An additional 58.95m of trench channel samples were also completed targeting visible pegmatite outcrops.

Figure 1: RHW Property

Benz Mining Chief Development Officer, Mark Lynch-Staunton, commented:

"Results show we have a significant LCT pegmatite system at the RHW property with drilling uncovering multiple thick LCT pegmatite dykes. While the thicknesses and fertility indicators are highly encouraging, the individual pegmatite dykes exhibit internal zonation, moving from spodumene rich to spodumene poor zones over short distances. Importantly, all the ingredients for a major lithium discovery still exist on the Ruby Hill West property, with over 25km of mostly unexplored prospective lithium trend remaining to be tested. The geological setting still suggests that additional discoveries are likely, with further work needed on uncovering the spodumene rich parts of the system."

Figure 2 Core Recovery RHW23-025 (100.5 to 113m). Assays: 0.67% Li₂O over 10.7m from 102.3m to 113m.

Figure 3 Core Recovery RHW23-017 (4.29m to 50.02m). Assays: 0.56% Li₂O over 11.11m from 29.8m to 40.95m

RHW Pegmatite

Drilling followed up on the previously announced intersection of **26.1m at 1% Li₂0** from hole RHW22-006¹. Hole RHW23-025 targeted the down dip extension of RHW22-006, and intersected **10.7m at 0.67% Li₂O**, within a greater **21.3m** LCT pegmatite (Figures 4 & 5). Trenching uncovered **19.5m at 1.13%** in RHW23CH-004, which significantly increased the mineralised zone of the pegmatite. The RHW pegmatites form a series of subparallel pegmatite dykes that typically dip 50 to 60 dg to the NW, changing to sub-horizontal near surface. The pegmatite dykes appear to closely follow the contacts of a differentiated mafic-ultramafic sill. A complete list of drill and trenching mineralised intercepts is reported in Tables 1 and 2 in Appendix 1.

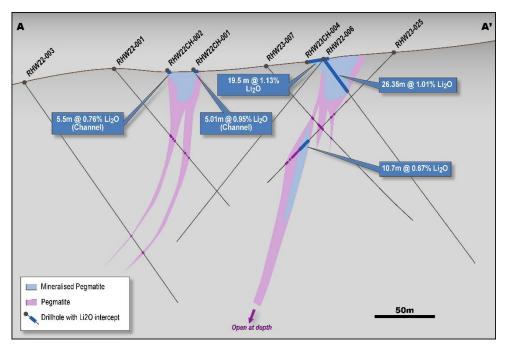
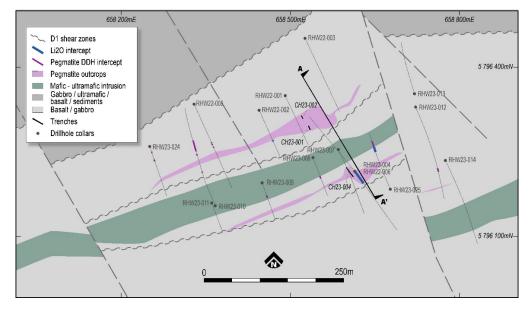
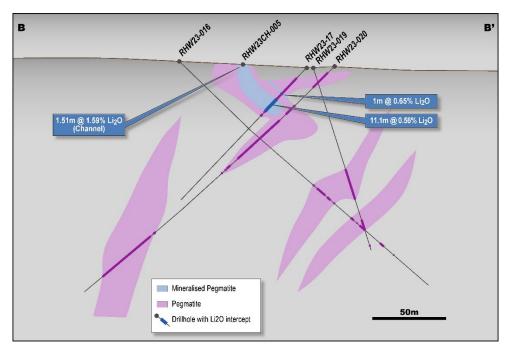
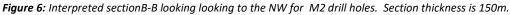


Figure 4: Interpreted section A-A view looking to the NW for RHW drill holes. Section thickness is 100m.




Figure 5: Geological map of RHW pegmatite trends with all Benz drill holes (2022 and 2023) and trench locations.


¹ 29 April 2022: Multiple Spodumene Pegmatites Intersected in Maiden Drill Program at Ruby Hill West

Mikisiw Pegmatites (M1 and M2)

Drilling intersected a stacked sequence of LCT pegmatites at the M2 target (Figures 6 & 7). Similar to RHW, there is evidence of internal zonation. Drillhole RHW-017 hit **11.11 at 0.56% Li₂0** within a wider **32.62m** pegmatite intersection. Several other thick pegmatite dykes were intersected showing encouraging lithium fertility indicators, however, did not intersect mineralised spodumene zones. Attention will now turn to vectoring into the spodumene rich zones within this stacked LCT pegmatite system. A complete list of drill and trenching mineralised intercepts is reported in Tables 1 and 2 in Appendix 1.

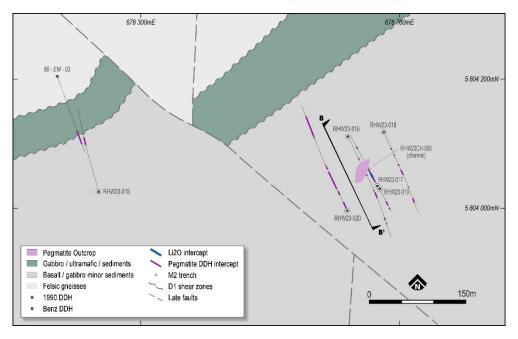
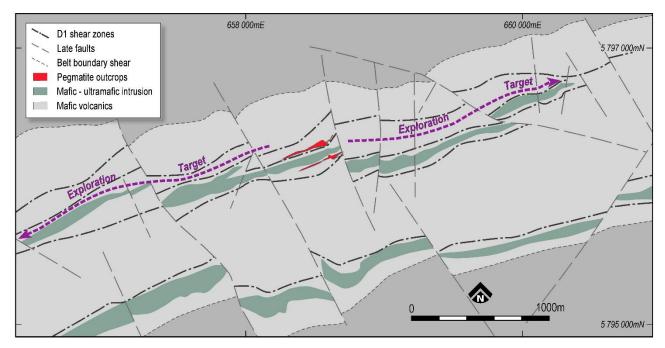


Figure 7: Geological map of M2 pegmatite area with Benz drill holes and trench location.


Exploration upside

LCT pegmatites on the RHW property are spatially associated with:

- mafic-ultramafic intrusions following D1 shearing; and
- Late NE-SW and NW-SE structures.

The intersection of these 2 trends are a potential trap for the more prospective LCT pegmatites.

With this criteria, there are clear upside exploration targets at the RHW pegmatite. The prospective maficultramafic sill combined with late structures is interpreted to extend for up to 2km either side of the known pegmatite intersections providing an immediate target for strike extension (Figure 8).

Figure 8: Simplified geological map (modified from SIGEOM) showing extent of the mafic-ultramafic intrusion, D1 shear zones and late brittle faulting conisdered controling factors in the emplacement of the RHW LCT pegmatites.

Within the greater 25km prospective trend, several other areas exhibiting mafic-ultramafic intrusion associated with brittle faulting have been identified and are considered highly prospective.

The area is heavily covered in glacial overburden and, in certain areas, thick forests, making outcrops difficult to find. However, the ground gravity survey conducted shows good correlation between low gravity and pegmatite dyke bodies, allowing it to be used as an additional targeting tool. Furthermore, an Orthophoto, Lidar and satellite imagery survey flown in late 2023 will further aid in vectoring into prospective areas.

Next Steps

- The Eastmain Gold Project remains a focus for the Company with a gold targeting review underway. The review is focusing on both the high-grade structural trends of the Eastmain Mine, and districtscale tier 1 opportunities within the tenement package. The Upper Eastmain belt remains underexplored and in the right geological setting for a new significant gold discovery.
- LCT pegmatite geochemistry and structural review of the belt is currently being conducted to better understand and predict / vector into where spodumene rich pegmatites occur.

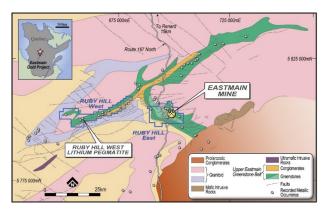
QA/QC

Drillholes were designed to intersect at depth several surface occurrences of pegmatites in the area. These outcrops are small and partly covered in overburden but were stripped and channel sampled during September 2023. All of the core samples (1/2 core) were sent for analysis at ALS Global in Val D'Or. Pegmatite core samples were analyzed with ME-MS89L where other rock types were analyzed by ME-MS61 (4 acid digestion).

This release was prepared under supervision and approved by Dr. Danielle Giovenazzo, P. Geo, acting as Benz's qualified person under National Instrument 43-101 for the reporting of exploration and drilling results.

This announcement has been authorised for release by the Board of Benz Mining Corp.

For more information please contact:


Mark Lynch-Staunton Chief Development Officer Benz Mining Corp. <u>mstaunton@benzmining.com</u> +61 8 6143 6702

About Benz Mining Corp.

Benz Mining Corp. (TSXV:BZ, ASX:BNZ) brings together an experienced team of geoscientists and finance professionals with a focused strategy to unlock the immense mineral potential of the Upper Eastmain Greenstone Belt in Northern Quebec, which is prospective for gold, lithium, nickel, copper, and other high-value minerals. Benz is earning a 100% interest in the former producing high grade Eastmain gold mine, Ruby Hill West and Ruby Hill East projects in Quebec and owns 100% of the Windy Mountain project.

At the Eastmain Gold Project, Benz has identified a combination of over 380 modelled in-hole and off-hole DHEM conductors over a strike length of 6km which is open in all directions (final interpretation of some of the conductors still pending).

In 2021, Benz confirmed the presence of visible spodumene in a pegmatite at the Ruby Hill West Project, indicating lithium mineralisation which Benz intends to further explore in 2022.

Benz tenure over Upper Eastmain Greenstone Belt on simplified geology.

Dannika Warburton Principal Investability Partners <u>dannika@investability.com.au</u> +61 401 094 261

About Eastmain Gold Project

The Eastmain Gold Project, situated on the Upper Eastmain Greenstone Belt in Quebec, Canada, currently hosts a NI 43-101 and JORC (2012) compliant resource of 1Moz at 6.1g/t gold (Indicated: 384koz at 9.0g/t gold, Inferred: 621koz at 5.1g/t gold). The existing gold mineralisation is associated with 15-20% semi-massive to massive pyrrhotite, pyrite and chalcopyrite in highly deformed and altered rocks making it amenable to detection using electromagnetic techniques. Multiple gold occurrences have been identified by previous explorers over a 12km long zone along strike from the Eastmain Mine with very limited but highly encouraging testing outside the existing resource area.

About Ruby Hill West Lithium Project

The Ruby Hill West Lithium project is a surface occurrence of spodumene bearing pegmatite within the Ruby Hill West project, located 50km due west of the Eastmain exploration camp. The occurrence was first sampled in 2016 by Eastmain Resources and then by Quebec government geologists in 2018. Only limited sampling was conducted by both groups.

In March 2022 Benz conducted a drilling program at the Ruby Hill West lithium pegmatite prospect and reported a **31.2m at 0.9% Li₂O** interval of visible spodumene rich pegmatite in the drilling (ASX & TSX-V releases dated 29 April 2022 "Multiple spodumene pegmatites intersected at Ruby Hill West").

Competent Person's Statement: The information in this announcement that relates to current exploration results is based on and fairly represents information and supporting information compiled by Dr Danielle Giovenazzo who is a P. Geo. of the Ordre des Geologues du Québec, a Recognised Professional Organisation under the JORC Code. Dr Giovenazzo is a consultant for the Company and has sufficient experience in the style of mineralisation and type of deposits under consideration and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Giovenazzo holds securities in Benz Mining Corp and consents to the inclusion of all technical statements based on his information in the form and context in which they appear.

The information in this announcement that relates to historical exploration results was first reported to the ASX in accordance with ASX Listing Rule 5.7. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements.

The mineral resource estimate in this announcement was reported by the Company in accordance with Listing Rule 5.8 on 24 May 2023. The Company confirms it is not aware of any new information or data that materially affects the information included in the previous announcement and that all material assumptions and technical parameters underpinning the estimates in the previous announcement continue to apply and have not materially changed.

Forward-Looking Information: Certain statements contained in this news release may constitute "forward-looking information" as such term is used in applicable Canadian securities laws. Forwardlooking information is based on plans, expectations, and estimates of management at the date the information is provided and is subject to certain factors and assumptions, including, that the Company's financial condition and development plans do not change because of unforeseen events and that the Company obtains regulatory approval. Forward-looking information is subject to a variety of risks and uncertainties and other factors that could cause plans, estimates and actual results to vary materially from those projected in such forward-looking information. Factors that could cause the forward-looking information in this news release to change or to be inaccurate include, but are not limited to, the risk that any of the assumptions referred to prove not to be valid or reliable, that occurrences such as those referred to above are realized and result in delays, or cessation in planned work, that the Company's financial condition and development plans change, and delays in regulatory approval, as well as the other risks and uncertainties applicable to the Company as set forth in the Company's continuous disclosure filings filed under the Company's profile at www.sedarplus.ca and www.asx.com.au. The Company undertakes no obligation to update these forward-looking statements, other than as required by applicable law.

NEITHER THE TSX VENTURE EXCHANGE NOR ITS REGULATION SERVICES PROVIDER (AS THAT TERM IS DEFINED IN THE POLICIES OF THE TSX VENTURE EXCHANGE) ACCEPTS RESPONSIBILITY FOR THE ACCURACY OR ADEQUACY OF THIS RELEASE.

Appendix 1: 2023 Drilling at Ruby Hill West

Table 1: Mineralised intersections from Diamond Drilling (>0.5% Li₂O and 0.5m) OR (>500ppm Ta)

Borehole	Li2O %	Ta2O5 _ppm	Nb ppm	Be ppm	Cs ppm	Rb ppm	From	То	Total Length	Mg/Li	Nb/Ta	K/Rb
RHW												
RHW23-025	1.02	186.00		57.50	463.00	1475.00	74.93	75.79	0.86	0.6	0.25	12.61
RHW23-025	0.67	240.00		132.90	1550.00	2113.00	102.30	113.00	10.70	1.42	0.46	8.37
includes	0.78	222.00		135.00	1412.00	1799.00	102.30	106.00	3.70	0.87	0.41	8.8
includes	0.86	215.00		252.00	1497.00	2440.00	111.00	113.00	2.00	1.2	0.5	7.6
RHW23-008	0.03	741.00	241.00	18.26	8.88	65.21	54.12	55.74	1.62	116	0.9	55.21
RHW23-009	0.15	1200.24	70.80	5.70	14.30	6.10	36.1	36.94	0.84	119	0.07	196
RHW23-011	0.40	102.60		188.90	1120.00	773.00	146.75	155.26	8.51	1.89	0.51	9.77
includes	0.70	82.70	34.50	45.80	621.00	476.00	148.75	149.63	0.88	0.5	0.51	9.03
M-2												
RHW23-017	0.65	36.51	64.10	202.00	12.40	813.00	24.00	25.00	1.00	0.3	2.14	30.26
	0.56	81.85	105.85	196.00	22.76	1252.74	29.84	40.95	11.11	1.78	1.74	21.46
includes	0.83	44.93	108.00	222.00	19.20	813.00	29.84	30.84	1.00	0.2	2.93	23.5
includes	1.30	64.71	120.50	164.00	20.80	1460.00	33.66	34.33	0.67	0.1	2.27	20.82

Table 2: Mineralised intersections	from Trench Channel Samu	pling (>0.5% Li ₂ O and 0.5m)
	ji onn menen enanner samp	Jiiiig (*0.370 Li <u>2</u> 0 uliu 0.3111)

Trench ID	Fror	n To	length	Li20%	Ta2O5_ppm	Rb	Cs	Ве	Mg/Li	Nb/Ta	K/Rb
trench 23CH-001	1.36	6.37	5.01	0.95	198	1599.1	2601	206	0.65	0.43	8.8
	4.85	5.85	1	1.48	199	1432	4857	341	0.62	0.345	6.9
trench 23CH-002	0	5.5	5.5	0.76	374.7	4143	5952	142	0.61	0.24	6.87
	2.5	3.5	1	1.06	314	4108	8223	147	0.24	0.18	8.27
trench 23CH-004	1.84	21.3	19.5	1.13	641.0	2342	965	191	0.74	0.21	9.35
	11.9	17.4	5.47	1.76	443	2221	784	178	0.22	0.21	8.72
M-1 outcrop											
trench 23CH-003	10.3	9 13.7	3.33	0.82	52	2696	172	23	0.34	0.47	13.5
M-2 outcrop											
trench 23CH-05	0	2.51	2.51	1.113	41	883	22	165	0.1	2.32	23.83
	0	1.51	1.51	1.588	37.25	1033	26.26	131	0.055	2.42	21.5

	Area	Facting	Northing	Elevation	Azimuth	Dip	End
Hole_ID	Area	Easting	Northing			-	Depth
RHW23-007	RHW2	658585	5796255	542.5	155	-50	179.0
RHW23-008	RHW2	658540	5796240	543.5	155	-50	104.0
RHW23-009	RHW2	658450	5796195	545	155	-50	104.0
RHW23-010	RHW2	658360	5796160	547.9	155	-50	89.0
RHW23-011	RHW2	658366	5796155	547.9	335	-45	245.0
RHW23-012	RHW2	658722	5796330	540	155	-45	224.0
RHW23-013	RHW2	658720	5796354	539.6	335	-45	125.2
RHW23-014	RHW2	658775	5796235	553.3	155	-45	218.0
RHW23-015	M2	678234	5804025	500	340	-50	188.0
RHW23-016	M2	678620	5804110	496	150	-45	230.2
RHW23-017	M2	678666	5804034	495	330	-45	125.1
RHW23-018	M2	678676	5804117	487.8	150	-45	194.1
RHW23-019	M2	678669	5804030	495	150	-75	130.6
RHW23-020	M2	678619	5803996	490	330	-45	237.3
RHW23-021	M1	680169	5805445	483	230	-45	87.2
RHW23-022	M1	680116	5805454	476.7	140	-45	56.0
RHW23-023	M1	680069	5805533	480	140	-45	155.1
RHW23-024	RHW2	658250	5796260	553	160	-45	124.9
RHW23-025	RHW2	658677	5796184	551	335	-45	124.0

Table 3: Collar data from Diamond Drilling at RHW (UTM NAD83 Zone 18N)

Hole_ID	Area	Easting	Northing	Elevation	Azimuth	End Depth
RHW23CH-001	RHW	658532	5796296	538.7607	154	6.87
RHW23CH-002	RHW	658519	5796314	539.281	152	6.49
RHW23CH-003	M1	680132	5805413	480.7346	59	13.72
RHW23CH-004	RHW	658599	5796224	545.5384	147	22.42
RHW23CH-005	M2	678646	5804073	492.0908	196	4.95
RHW23CH-006	RHW	659257	5796566	509.8909	158	1.38
RHW23CH-007	RHW	659259	5796568	509.1184	166	1.28
RHW23CH-008	RHW	659260	5796570	508.4919	149	1.84

Appendix 2: JORC Tables

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralization that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralization types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 NQ size core drilling Core cut in two equal halves with one half submitted for assays. Core length for individual samples was based on geological observations. No samples were less than 30cm (0.3m) in length. Channel samples Cut channel samples were of various length to represent subtle lithological / textural changes or to be as constant as possible. Channels were cut with single blade rock saw. Width of the channel averaging 5cm and depth averaging approximately 6.6cm
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Triple tube NQ core drilling. Hole depths vary between 56 and 245m. Core was oriented using downhole orientation tool

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximize sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recoveries were measured by comparing the length of core recovered against the length of drill rods used and recorded by the drilling contractor. For the sampled intervals the core was cut in half and half of the core was sent for assays Length of core sampled for individual assays was determined by the logging geologist following geological/mineralization boundaries. To ensure representativity, no intervals shorter than 30cm were sampled.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All core was logged for. Lithology Alteration Mineralization Mineral species abundance Veining Structures Both qualitative and quantitative logging was conducted 100% of the core drilled has been logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. 	 Half core sampled. Channel Samples: Dried samples were entirely crushed and homogenized. Samples were then riffled, and a small proportion was assayed.

Criteria	JORC Code explanation	Commentary
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Pegmatite core samples were analyzed with ME-MS89L by ALS Global where other rock types were analyzed by ME-MS61 (4 acid digestion) by ALS global. Samples where visual observations suggested potential gold and samples with visible gold were submitted for AA, fire assay. Industry certified reference material (CRM or colloquially "standards") have been introduced at the rate of 1 per 20 samples submitted to keep track of any potential analytical drift at the laboratory. Laboratory duplicates on pulps have been conducted at a rate of 1 per 100 samples submitted. The laboratory also introduces several CRM within their routine and analytical results for those CRM's are communicated to the Company with the final assay results
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No twinning of holes at this stage All sampling protocols have been peer reviewed and all data is stored appropriately. No adjustments to assay data have taken place.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drillhole locations have been surveyed by handheld GPS with a typical accuracy of +/-4m. Downhole surveys were conducted using a Reflex Multishot Gyro Grid: UTM NAD83 Zone 18N Topographic control is cross-checked with a 2023 LIDAR survey
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade 	 Not applicable. Data is not yet used in a resource estimation. A proportion of the holes have been drilled on a 100m x 100m pattern which is too widespaced for resource estimation but allows for the calculation of an Exploration

Criteria	JORC Code explanation	Commentary
	 continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Target based on the establishment of geological continuity between 100m spaced drillholes
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drilling targeted newly identified areas in the geological system
Sample security	• The measures taken to ensure sample security.	• All samples were cut and prepared on site by Company employees and contractors. Samples bags were sealed and transported to the laboratory directly from the sampling site by contractors.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• The Company is constantly reviewing its sampling and assaying policies. No external audit has been conducted at this stage.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 178 claims at the Ruby Hill West property form part of the same acquisition deal as the Eastmain Project. Benz currently holds a 75% right, title and interest to these claims at the Ruby Hill West property. Benz can move to 100% ownership with the payment of C\$100,000 by 23 October 2025 (payable in cash or shares at the election of the vendor to a maximum of 500,000 shares). The vendor will retain a 1% NSR royalty, one half of which can be purchased for C\$500,000. A further 124 claims at the Ruby Hill West property are 100% owned by the Company. The claims that form the Ruby Hill West property are all in good standing with an active status.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 1930s and 1940s: Exploration began as prospecting of gossan zones in felsic and ultramafic rocks south of Lac Dolent on the east shore of Lac Jim (NTS 33A07). Extensive trenching targeted gossan zones within felsic volcanic rocks on the east shore of Lac Jim and gossan zones within ultramafic rocks on the south shore of Lac Dolent. 1950s and 1960s Several companies, including Riocanex, explored the northeastern trending part of the Upper Eastmain River Greenstone Belt in the Lac Leran area, located 25 km northeast of the Eastmain Mine Gold deposit. mid-1960s Fort George completed diamond drilling on a gossan zone associated with a komatiite horizon located southwest of the Dejour claim block. Mineralized zones with pyrite-pyrrhotite-chalcopyrite were intersected. 1969 McPhar Geophysics completed for Canex Aerial Exploration Ltd. – Placer Development Ltd. a combined airborne magnetic and electromagnetic survey (1221 line-km) on the greenstone belt (GM26898). 1989 The Eastmain Syndicate conducted an airborne (Aerodat) magnetic and electromagnetic (VLF-EM) survey. The field component consisted of a basal till sampling program, mapping, trenching, and sampling, which led to the discovery of the Exko showing. 1989: Kingswood Exploration conducted airborne geophysical surveys, prospecting and till sampling in addition to drilling of which 5 DDH are within the RHW project.

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	 1994 Geonova (Canso Exploration Ltd) conducted compilation and exploration work over three blocks in Option in RHW. They did lineament interpretation, reinterpreted the airborne magnetic survey and cut 4 grids onto which they surveyed for mag (166.3 l-km), MaxMin (103 l-km) and IP (37 l-km). this was followed up with prospecting, geological mapping and 6 short DDH (GE-94-1 to Ge-94-6 for a total of 240.2 metres) 1995: Geonova drilled 11 drill holes totalling 1,518.5 metres over the RHW and extension. 1996: GeoNova conducted a MaxMin survey (63.5 l-km) 1997: Geonova cut grids, geophysical ground surveys (MaxMin, Mag, and Beep-Mat) mapping sampling and diamond drilling for a total of 8 holes 2003- 2004: Ruby Hill Exploration Inc. carried out geological field work in 2003 and laboratory studies focused on the mineralogy and chemistry of komatiites and related rocks. 2005 Eastmain Resources Inc. completed a 3,200 line-km airborne survey (VTEM and magnetic) over the Eastmain Mine property and the Ruby Hill properties (GM62979). 2008 Eastmain Resources Inc. drilled 29 holes on the Ruby Hill West Property and 8 drill holes on the Ruby Hill East property. As well, a short reconnaissance mapping and sampling program was carried out on the Ruby Hill West property. 2013 Aeroquest Airborne (Aeroquest) performed a 3-axis helicopter-borne magnetic gradiometer geophysical survey over the Ruby Hill West Block. 2014 Eastmain Resources Inc. carried out an 8-day mapping and prospecting program on the Ruby Hill West and East properties validating the structural geology interpretation conducted by SRK and submitted to Eastmain Resources Inc. in July 2014. 2016-2017: Diagnos generated 15 exploration targets using Computer Aided Resources Detection System (CARDS) over the Ruby Hill West and East properties. A total of 212 grab samples were collected and only two returned gold values greater than 100 ppb.
		2016: Eastmain Resources carried out a mapping a prospecting campaign on the Ruby Hill West property. A total of 158 samples were collected and the best gold value returned (18.15 g/t Au) was interpreted as being an extension of the Exko showing. A well, the presence of lithium in spodumene-bearing pegmatite was discovered by Eastmain Resources Inc. during field work performed in 2016 (Showing Éch. S894341). Grab samples returned values ranging
		from 0.5% to 4.72% Li ₂ O with anomalous values in Ta, Cs and Rb. The following year, in 2017,

Criteria	JORC Code explanation	Commentary
		a team from the Quebec geological survey (MERN) visited this outcrop and sampled the pegmatite and confirmed the high lithium content of the pegmatite (SIGEOM, 2019)
Geology	 Deposit type, geological setting and style of mineralization. 	 Regionally, Benz Mining tenure covers Archean geology and predominantly greenstone sequences, composed of ultramafic, mafic and felsic volcanic, sub volcanic and plutonic rocks. Worldwide, Archean Greenstone Belts are known to host orogenic gold deposits, intrusion related gold deposits, polymetallic volcanogenic massive sulphide deposits, nickel sulphide deposits (Komatiite flow or ultramafic intrusive related), pegmatite hosted Lithium Tantalum Tin Cesium mineralization.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer Table 2 at Appendix 1.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths 	 Length weighting averages were produced using a 0.2% Li₂O cut-off and allowing for 1m internal dilution. No top cuts applied. All assay returning results >0.2 Li₂O% are deemed reportable and have been reported individually in Annexure 1 table 4

Criteria	JORC Code explanation	Commentary
Relationship between	 of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. These relationships are particularly important in 	The exact geometry of the system is still not completely known.
mineralization widths and intercept lengths	 the reporting of Exploration Results. If the geometry of the mineralization with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The current interpretation is that the geology is dipping at ~50° towards the northwest. But the pegmatites show irregular attitudes. All drilling is conducted oriented towards the southwest or to the NW to cross mineralized intrusions at an angle as close as possible to perpendicular (90°) to minimize any geometry bias in the reported thickness of geological objects. Drillhole orientation and known structural setting suggest that drillholes intersected mineralization close to perpendicularly in SE oriented drill holes, the meaning that downhole intervals in those holes are believed to be close to true width/thickness.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See figures in the body of text.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All complete half core assays results available to the Company have been released. The Company may have partial results available which are awaiting completion and as such cannot be reported as they are not an accurate representation of information. All complete assay results available to the Company have been reported.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk	 A detailed ground gravity survey was conducted in September 2023 by TMC geophysics. A Lidar and orthophoto survey were conducted over the know Li-Pegmatites in September 2023 At Ruby Hill West, a soil survey and prospecting campaign was initiated in May 2023, but was

Criteria	JORC Code explanation	Commentary
	samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 interrupted by evacuation orders because of large uncontrolled forest fires. This work resumed in August 2023, followed by drilling in September / October 2023. Stripping of the outcrops and sampling at regular intervals in trenches was also done.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	