

QUARTERLY REPORT FOR THE PERIOD ENDED 31 DECEMBER 2023

Highlights

Hualilan Gold Project - San Juan, Argentina

- Scoping Study (SS) completed during the quarter demonstrating outstanding economics, rapid payback and strong cashflows (Refer ASX Release 8 November 2023).
- The Study focused on the high-grade core of Hualilan to present a low startup-capital project capable of being funded by the Company in the current challenging market conditions. Highlights of the study include:
 - Forecast EBITDA of US\$738m (A\$1.1 billion) over Life of Mine (LOM);
 - Rapid payback period of under 1.25 years based on current production target; and,
 - Average annual production target of 116,000 oz Au, 440,000 oz Ag, 9,175 t Zn (141koz AuEq¹);
 - Global lowest-quartile C1¹ cash cost of US\$527/oz (A\$811) and AISC² of US\$830/oz (A\$1277);
 - An initial mine life of 7 years, with mineralisation open at depth potentially extending LOM;
 - Low-risk starter pit followed by conventional sub-level open stope (SLOS) underground mining;
 - Pre-tax NPV⁵ US\$409m (A\$629m) at US\$1,750/oz Au \$20/oz silver (spot gold price US\$1975);
 - Pre-tax NPV⁵ increases to A\$869m at current gold (US\$2,035) and silver (US\$23) prices;
 - Project IRR (Pre-Tax Real) of 75% and a breakeven gold price of US\$983/oz.

 Outstanding potential upside to the Scoping Study with several material opportunities for improvement under evaluation for inclusion in the final development plan including:

- The recently confirmed conversion of the Au-Ag concentrate produced by the flotation circuit into doré on site, thereby reducing transport and TC/RC costs, and increasing payability
- Inclusion of a heap leach, alongside a flotation, to capture value from the low-grade portion of the Hualilan orebody, which was excluded under the high-grade SS strategy
- Reduction in the cut-off grade of zinc ore fed into the flotation circuit
- Re-optimisation of both the underground and open pit (previously done at US\$1700 Au) using lower cut-off grades supported by work subsequent to the completion of the SS
- Reduction in open pit mining unit cost through owner-operator and bulk mining efficiencies.
- Hualilan regional exploration program extended with several attractive new targets emerging.

El Guayabo/Colorado V Gold/Copper Projects - El Oro, Ecuador

- The Company is awaiting the completion of an independent Project Report done to the standards required under the Canadian 43-101 reporting regime.
- This 43-101 report will include an independent update the existing El Guayabo Mineral Resource Estimate.
 - ¹ AuEq information as required under JORC is provided on Page 20 of this ASX release as footnote to Table 11 (Hualilan MRE)

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

Challenger Gold (ASX: CEL) ("**CEL**" or the "**Company**") is pleased to provide its Quarterly Activities Report for the period ended 31 December 2023 ("Quarter", "Reporting Period").

During the Quarter the Company's completed its Scoping Study for the Hualilan Gold Project (refer ASX release 8 November 2023 titled "Hualilan Gold Project Scoping Study"). The study presents an initial economic evaluation of the project and suggests that the project could become one of the lowest-cost ASX producers, with a rapid payback period, and average annual production of 116,000 oz gold (141,000 oz gold equivalent¹) based on the Study production target. Notwithstanding the outstanding outcome of the Study, the Company has identified several clear, and potentially material, opportunities for optimisation and improvement which are currently under evaluation.

Cash at bank at the end of the quarter was \$4.3 million in line with budget forecasts. During the quarter the company commenced a process aimed at procuring funding to complete the Hualian bankable Feasibility Study via either:

- A Strategic Investor; or
- Royalty or Stream Finance; or
- Other forms of non-dilutive finance

The process is progressing well with several options currently being evaluated.

Net exploration expenditure for the quarter was \$1.7 million, a 45% reduction from the September quarter on the back of a 25% reduction from the June quarter. A total of \$565,000 of this spend was related to Ecuador which was primarily the cost of assays related to the channel sampling program, consultants for the preparation of an independent report under the Canadian 43-101 reporting regime and ongoing cost of the Ecuador exploration team. With the completion of this work ongoing spend in Ecuador is has reduced a further 30% into this quarter. Exploration spend for Argentina was primarily the Scoping Study of approximately \$550,000 and geophysics, both of which are now complete, with the remainder for regional exploration expenditure and consultants and employees. Accordingly, spend in Argentina has continued to reduce into the current quarter.

Net spend during the quarter was \$2.7 million which included the exploration net spend of \$1.7 million and Administration and Corporate costs of \$1.0M. The \$1.0M administration and corporate costs, with no significant costs outside of those expected related to an ASX listed Company, with staff costs of \$69k and exploration staff costs (\$178k) to related parties and their associates. The Company benefited from its cost reduction program which has achieved considerable cost savings across all operations and corporate and is ongoing. The current quarter will be the first quarter that captures all cost saving measures.

On the 28 November 2023, the Company announced the appointment of Dr Sonia Delgado as an Executive Director. Dr Delgado is based in Argentina and over a distinguished career in the Argentinian public sector, has occupied positions including, Assistant Office of the State Prosecutor of the Province of San Juan; Undersecretary of Planning and Promotion of Mining Development and, most recently, Secretary of Mining for the province of San Juan, Argentina.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Dr. Delgado's legal background and strategic view is a significant asset in navigating the regulatory environment of the mining industry. Her expertise will be vital in ensuring that the company adheres to all relevant laws and regulations, thereby minimizing legal risks and protecting the company's interests as it embarks towards production.

During the quarter the following Performance Shares and Performance Rights vested having met the applicable vesting criteria with the release of this Scoping Study. The Company notes that all owners of the vesting performance Shares and Performance Rights are existing shareholders with freely trading existing shares.

Performance Shares	Number	Expiry
Class B	60,000,000	N/A
Performance Rights	Number	Expiry
Performance B	9,500,000	4 July 2026
Performance C	2,500,000	N/A

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

HUALILAN GOLD PROJECT - ARGENTINA

HUALILAN SCOPING STUDY (Refer to ASX Release 8 November 2023)

During the Quarter, the Company announced the outcomes of the Hualilan Scoping Study ("the **Study**"). The study presented an initial economic evaluation of the project and suggests that the project could become one of the lowest-cost ASX producers, with a rapid payback period, and average annual production of 116,000 oz Au, 440,000 oz Ag, 9,175 t Zn (141,000 oz gold equivalent¹) based on the Study production target.

The Study forecasts EBITDA of US\$738m (A\$1.1 billion) over Life of Mine (LOM) and a LOM All In Sustaining cash Cost (ASIC) of US\$830/oz using gold price od US\$1750/oz. Sensitivity analysis demonstrates the project would require a grade reduction or gold price reduction in the order of 44% to reach the breakeven gold price of US\$953 from an NPV perspective.

A summary of the study financial outcomes provided in Table 1 with the key assumptions in Table 2. Complete study details are available in the Scoping Study which is included as an Annexure to the November 8th ASX release.

Notwithstanding the excellent outcome of the Study, the Company has identified several clear, and potentially material, opportunities for optimisation and improvement. Additionally, the Company is undertaking an external analysis of the projects carbon intensity, which will be released to the ASX upon completion.

Pini Althaus, Non-Exec. Director

Table 1 - Scoping Study Case 1 (conventional flotation) summary financial outcomes

Table 2 - Key Scoping Study Assumption

Price Assumption	Study Assumption	5 Year Average	Spot
Gold	US\$1750/ oz	\$1710	\$1975
Silver	US\$20/ oz	\$20.72	\$23
Zinc	US\$1.15/ lb	\$1.28	\$1.15
Lead	US\$0.94/ lb	\$0.93	0.98
AUD/USD	0.65	0.70	0.65
Metallurgical Recoveries and Concent	trate Payability	Recovery (%)	Avg Payability ¹ (%)
Gold		95.8%	88.4%
Silver		93.0%	54.8%
Zinc		89.0%	73.1%
Lead		75.8%	93.6%
Concentrate Transport (site to smelter	including insurance)		US\$150/ wmt
Mining Physicals		Open Pit	Underground
Tonnes Ore		1.3 Mt	5.8 Mt
Tonnes Waste		8.4 Mt	2.1 Mt
Underground development			58,937m
Indicated and Inferred Resource (% in	dicated/% inferred)	82%/ 18%	81%/ 19%
Gold Grade (LOM average)		3.4 g/ t	3.6 g/ t
Silver Grade (LOM average)		22.3 g/ t	12.1 g/ t
Zinc Grade (LOM average Type C mate	erial)	3.9%	2.7%
Lead Grade (LOM average Type C mat	erial)	0.33%	0.14%
Unit operating Costs		Unit	Unit Cost
Open pit Mining (ore/waste)		US\$/ t mined	3.00
Underground Mining		US\$/ t mined	34.74
Underground Development			
Inclined Development (5 m x 5 m)		US\$/ m	2,828
Horizontal development (5 m x 5 r	n)	US\$/ m	2,828
Vertical Development		US\$/ m	2,333
Slot Rises (included in undergroun	d mining cost)	US\$/ m	1,500
Underground Development		US\$/ t mined	28.29
Total Underground Mining and Devel	US\$/ t mined	63.03	
Processing (Type C ≥1.5% Zn)	34% total PMI	US\$/ t processed	16.31
Processing (Type B ≥1.5 g/ t Au, <1.5%	Zn) 60% total PMI	US\$/ t processed	12.12
Processing (Type A <1.5 g/ t Au)	7% total PMI`	US\$/ t processed	9.26
G&A		US\$/ t processed	5.38

¹ Payability after Transport Cost . Refining Cost (TC/RC) / Penalties

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

Study Approach

The Hualilan Project has inherent optionality given that the Hualilan Mineral Resource Estimate (MRE) starts at surface and contains a high grade core of 8.1 Mt at 5.0 g/t Au, 17.4 g/t Ag, 1.8% Zn at the underground optimisation cut-off grade of 2.37 g/t AuEq, within the larger MRE of 60.5 Mt at 1.1 g/t Au, 6.0 g/t Ag, 0.44% Zn.

The Study commenced using benchmarked costs provided by Mining Plus from a sub-set of their internal mining database, specifically originating from operations in Latin America. This allowed for a preliminary options assessment of:

- Open-pit (OP) vs underground (UG) vs combination mining
- Different potential processing flowsheets which considered multiple circuit combinations which included or excluded: gravity concentration, floatation (including FTL) and CIL
- Multiple potential processing throughput rates; and
- Approximate capital cost of various options.

An initial OP optimisation, using the aforementioned Mining Plus benchmarked unit costs from Latin America, indicated that potential exists for a large open pit which would take advantage of economies of scale. Initial pit optimisation using a mining cost of US\$2.00/t, pit wall slopes of 55° on the east, and a US\$1800 gold price generated a pit, which at Revenue Factor 71, recovered 47.6 Mt of mineralisation and delivered an undiscounted value of US\$1.0B, with a further 2 Mt of high-grade mineralisation potentially mineable via underground methods below the optimised shell.

After considering these initial results and the associated capital costs, the Company took the decision to focus the Study on the high-grade core of the mineralisation. This decision was primarily made to ensure that CEL had a credible pathway to fund production via a development plan with a low up-front capital cost and a rapid payback. The present, challenging market conditions did not appear conducive to the Company's ability to fund the higher capital cost (and/ or potentially longer payback period) required for the construction of a high-volume OP mine, despite it being likely that mine development could be staged to manage capital outflows.

A key part of the reasoning behind this decision was that the initial pit optimisation showed material levels of sensitivity to OP mining unit cost and to pit slope angle, particularly on the eastern side of the pit where the Hualilan hills would need to be pioneered and mined back. The geotechnical data required to support a 55° overall pit slope in the limestone unit of the Hualilan Hills was not available, and beyond the scope of the study. It should be noted that overall pit slopes greater than 55° are commonly observed in nearby limestone quarries.

Finally, the possibility of a low-grade heap leach as an additional processing stream was unable to be evaluated due to long-lead (90 day) metallurgical column test work in progress at the time of this release. Heap leaching is potentially an important opportunity to consider as studies continue as it could provide a low cost pathway to process the low-grade mineralisation via a large open pit.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Key LOM Production Statistics	Year 1	LOM
Life of Mine (LOM)		7 years
Ore tonnes mined		7.1 million
Ore processing rate		1,050,000 tpa
Average Annual gold production (recovered)		116,000 oz
Average Annual silver production (recovered)		440,000 oz
Average Annual zinc production (recovered)		9,175 t
Average Annual lead production (recovered)		474 t
Average Annual production (Au equivalent) ³		141,000 oz
Key LOM Financial Metric	US\$	A\$
Revenue (LOM)	\$1,465 million	\$2,254 million
EBITDA (LOM)	\$738 million	\$1,135 million
C1 Cost (Real – US\$/ oz)	\$527/ oz	\$811/ oz
ASIC (real – US\$/ oz)	\$830/ oz	\$1277/ oz
Free cashflow (Pre-tax) LOM	\$682 million	\$1,049 million
Free cashflow (Average per annum)	\$101 million	\$155 million
Pre Tax NPV ⁵	\$409 million	\$630 million
Post Tax NPV ⁵	\$295 million	\$454 million
Payback Period (Pre-Tax)		1.25 years
Payback Period (Post Tax)		1.25 years
Project IRR (Pre-Tax Real)		75.2%
Project IRR (Post Tax Real)		66.0%
Pre Production Capital Costs	US\$	A\$
Pre-production capital	\$134 million	\$206 million
Contingencies	\$15 million	\$23 million
Total Pre-Production Capital	\$152 million	\$234 million
Key Social Metrics	US\$	A\$
LOM royalties and corporate taxes	\$166 million	\$256 million
LOM Expenditure	\$772 million	\$1,187 million
LOM Economic Value Add Argentina	\$938 million	\$1,443 million

Table 3 - Key Scoping Study LOM Financial and Physical Outcomes

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Mine Design and Production Target

The Study mine plan was designed to supply Potential Mining Inventory (PMI) to the processing plant at a rate of approximately 1 Mtpa. The mine design is comprised of three high-grade starter open pits(North, Central, and South) which will be mined using conventional excavator and truck techniques over 4 years by a mining contractor. It was necessary to include a starter pit as an underground startup would not provide sufficient waste material for the construction of the Tailings Storage Facility (TSF). Additionally, a starter pit offers a reduced production risk profile in the early year of operation.

Owner-operated underground mining was modelled on the basis of sub-level open stoping (SLOS), with a 30 m crown pillar between the pit floor and the upper most underground stope. Based on the available geotechnical data, and on similar operations, the following stoping assumptions were used for the UG mine design:

- Level spacing (floor to floor) 20 m;
- Strike length (regardless of stope width) 20 m;
- Minimum stoping width 2.5 m; and
- Minimum crown pillar of 30 m below the designed open pits.

Hualilan will utilise paste backfill and as such there are no further requirements for UG pillars . The three underground portals have been located outside the open pits to decouple the UG development schedule from OP production rates and to provide flexibility to start underground development earlier. This was a critical factor in the earlier trade off studies that negatively affected the NPV of the combined open pit and underground options, with underground mining unable to commence prior to the completion of open pit mining creating material impact to NPV.

During the pre-production year, PMI will be extracted from the pit and stockpiled, and waste will be sent to TSF for construction of the first embankment lift, which will initially store two years of processing production. Underground mining will also commence at the start of the pre-production year in the north and south UG zones. In the first year of production, the plant will be fed with PMI from the stockpiles (SP), open pit and underground. From the second year onwards, the plant will be supplied with PMI primarily coming from the underground mine.

When processing commences there will be approximately 655 kt of PMI on stockpiles, which is equivalent to approximately 7 months mill feed, and approximately 400 kt of this is high-grade SP. This also opens the possibility to commence processing earlier if construction and commissioning is completed ahead of schedule. The underground mine plan has three operating areas (north, central and south), each of which are capable of being scaled up in response to production issues in another. There is also scope to share equipment between the 3 underground mining areas, however this option has not been included in the Scoping Study analysis.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

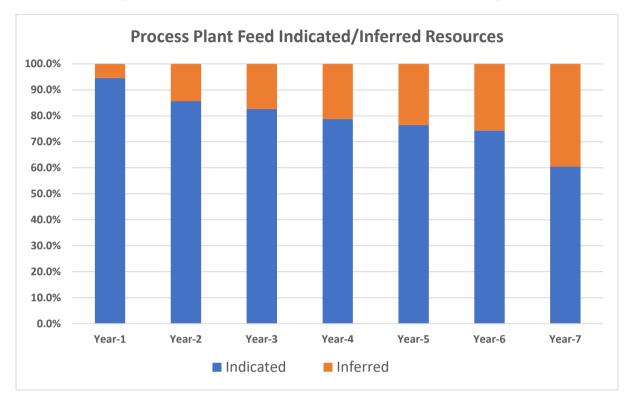


Figure 1: Breakdown of Scheduled Process Plant Feed by Resource Category

A breakdown of the PMI schedule for processing across the life of the project is shown in Figure 1. Over 80% of the PMI schedule for processing in classified as Indicated Resource, with the balance classified as Inferred Resource. In the early years of production the percentage of Indicated Resource processed is higher, with an average of 88% Indicated Resource scheduled for processing in the first 3 years of plant operation.

At the completion of the SS production plan the unmined component of the Hualilan Project MRE is:

53.5Mt at 1.0g/t AuEq (0.8 g/t Au, 4.9 g/t Ag, 0.32% Zn, 0.06% Pb) - containing 1.7 Moz AuEq

Capital Costs

The capital cost estimate was prepared by Mining Plus and a number of independent external consultants retained by CEL. There was limited use of benchmarking, with costs generally sourced from vendor quotes/ indicative prices, or detailed first principal cost analysis using vendor quotes based on the preliminary project design. Where benchmarking was used to provide any capital costs the primary source was the Mining Plus internal cost database, augmented by Challenger's consultants databases. Where benchmarking was used to provide capital cost estimates this was specifically stated.

The cost estimate is expressed in Q3 2023 US\$ and used the USD/ARS exchange rate at the time the quotation was provided (average 200 ARS/USD) for any in-country costs provided in ARS. In practice in Argentina most cost quotes are generally provided in USD and converted into ARS based on the

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

prevailing USD/ARS rate. The costs do not include allowances for escalation or exchange rate fluctuations. All costs are exclusive of the Argentinian value added tax (VAT), which is applied separately in the financial model used for economic evaluation.

The capital cost estimate for this scoping study has a target accuracy range of $\pm 15\%$ where costs have been sourced from vendor quotes or first principles analysis. The costs developed by benchmarking have a target accuracy of $\pm 35\%$.

Description	Pre-	Sustaining	Total
	production	Capital	Capital Cost
	Capital Costs	Cost	
1. Open Pit Development (inc. Truck Shop, Wash Bay, Tyre Bay)	5.8		5.8
2. Underground Development (inc. paste plant)	21.8	45.0	66.8
3. Process Plant	59.0	8.9	67.9
4. TSF	5.4	3.2	8.6
5. On-site Infrastructure	8.7	1.5	10.2
6. Off-site infrastructure	0.0	0.0	0.0
7. Owners Costs	15.6		15.6
8. Indirect Costs	2.7		2.7
9. Contingency	14.7	0.5	15.2
Total Capital Expenditure	133.7	59.0	192.7
10. Other Pre-production Costs ³	18.4		18.4
Total Pre-Production Capital	152.1	59.0	211.1

Table 4: Summary Capital Cost Estimate (all figures in US\$)

1. All figures are rounded to reflect the relative accuracy of the estimate.

2. Totals may not sum due to rounding as required by reporting guidelines.

3. Pre-production costs are operating costs that occur prior to the mill operating.

The following areas were included in the Pre-Production Capital Cost estimate:

- 1. Open Pit Mine (open pit mine development, equipment fleet, pre-stripping/ pioneering and supporting infrastructure and services);
- 2. Underground Mine (underground development, equipment fleet, paste backfill plant and supporting infrastructure and services);
- Process plant (gold-silver, zinc-gold-silver, and lead–gold-silver concentrates), conventional 1-1.2 Mtpa concentrator and Flotation Tails Leach circuit with supporting plant infrastructure and services;
- 4. TSF;
- 5. On-site infrastructure (earthworks, sitework, roads, water treatment and distribution, camp and other general facilities);
- 6. Off-site infrastructure;
- 7. Owners Costs including EPCM, spares, first fills, transport costs and import costs;

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

- 8. Indirect costs;
- 9. Other Pre-production Costs (other operating costs prior to commercial production/ processing); and,
- 10. Contingency (applied at +15%).

Total capital costs are US\$133.7 million, not including US\$18.4 million of capitalised mining costs. Total Pre-development capital costs of US\$152.1 million are summarised in Table 4. More complete details of pre-development capital costs are provided in the Chapter 24 of the Scoping Study.

Operating Costs

The operating cost estimates in the Study are based on: contractor operated truck and excavator open pit mining; owner operated underground mining via longitudinal SLOS with paste backfill; processing which includes gravity recovery, conventional flotation and with Floatation Tail Leach (FTL); and, deposition of the tails not consumed in the paste backfill process in a Tailing Storage Facility (TSF).

Operating cost estimates have generally been derived from first principles costs analysis prepared by external consultants, rather than by benchmarking. These cost estimates include local labour rates derived from San Juan industry standards, costs sourced by vendor/ supplier quotations both in Argentina and externally, and productivity rates that reflect the local workforce and conditions. Unless otherwise stated in this ASX Release or the Annexure Scoping Study Report the operating cost estimates have an expected accuracy range of $\pm 15\%$.

The operating estimate is expressed in Q3 US\$ and used USD/ARS exchange rate at the time the quotation was provided for any in country costs provided in ARS. In practice, in Argentina, most quotes are generally provided in USD and converted into ARS based on the prevailing USD/ARS. This includes diesel, equipment hire for both general and specialised mining equipment, reagents and consumables. The exceptions are Government provided services such as grid power and in-country labour. Generally, the rate of increase in the ARS price tracks the decline in the ARS/USD rate for power and labour, however there is a 1-3 month lag in the repricing of ARS denominated costs. For any ARS denominated input costs, such as grid power and labour, Challenger has used the 2022H2/2023H1 prices, as converting the current local ARS costs into a USD denominated price at the prevailing ARS rate would artificially lower these input costs on a USD basis.

Underground Mining Costs

Table 5 provides a breakdown of the underground mining costs which were derived from a detailed first principles analysis prepared by external underground mining consultants via a bottom up analysis. The mine operating cost estimate included the costs associated with stope preparation, drilling, blasting, ground support, backfill, underground loading and hauling and material transport to the primary crusher on surface, as well as support and ancillary equipment operations and maintenance, power, direct labour, and mine operations supervision staff.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Category	US\$/t Processed Incremental	US\$/t Processed Total
Stoping	4.56	7.75
Slot Rises	3.19	1.15
Production Bogging		2.89
Trucking		4.43
Mine Auxiliary – Pumping	0.05	
Mine Auxiliary – Ventilation	0.51	
Mine Auxiliary – Backfill	3.13	14.66
Mine Auxiliary – Power	2.67	14.00
Mine Auxiliary – Labour	4.07	
Mine Auxiliary – General	4.22	
Mine Supervision		5.01
Total Undergroun	34.74	

Table 5 – Underground Mining Costs

Process Costs

The process operating cost estimate accounts for the operating and maintenance costs associated with the process plant operation, supporting services, infrastructure, and tailings filtering. Operating costs associated with the paste backfill plant are included in the mine operating cost estimate.

Process plant operating costs have been estimated by Challenger's consulting metallurgists from first principles, using mechanical equipment specifications for estimation of power consumption, metallurgical test-work for reagent and grinding media consumption estimates, preliminary labour schedules and salary build-ups for process labour and maintenance labour. The cost of spares was estimated as a fixed percentage of 5% of the mechanical equipment supply cost.

Quotations for consumables such as reagents, lime, binder and grinding media were obtained from suppliers inclusive of transportation to site. A unit power cost of US\$0.07/ kWh was assumed with power consumption based on the results of comminution testing and desired grind size. An allowance equal to the power usage of the comminution circuit was applied to the rest of the process plant. Grid power is currently US\$0.06/ kWh in San Juan.

The PMI feed has been divided into three separate categories based on gold and zinc grades. Each type of PMI has a slightly different flow sheet:

- 1. **Type A material** the lower grade PMI containing <1.5 g/t Au and <1.5% Zn (Type A) processed via bulk flotation with cleaning stages.
- 2. **Type B material** The higher grade PMI ≥1.5 g/t Au with <1.5% Zn (Type B) follows the same flow sheet as Ore Type A with the addition of flotation tails leach (FTL).
- 3. **Type C material** For the PMI containing ≥1.5% Zn (Type C) a stage of Pb-Cu rougher flotation and Zn flotation is added.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Table 6: Process Operating Cost for PMI Type C

Category			Cost
		Annual US\$	Unit US\$/t Ore
Operating Labor		1,915,984	1.82
Maintenance Labor		1,084,274	1.08
Power		2,100,000	2.10
Reagents and Consumables		9,499,572	9.50
Spares		1,712,329	1.71
Assays		100,000	0.10
	Totals	16,312,159	16.31

Table 7: Process Operating Cost for PMI Type B

Type B (Au≥ 1.5 g/t Au, Zn< 1.5%) Bulk Flotation + FTL										
Category	Cost									
		Annual US\$	Unit US\$/t Ore							
Operating Labor		1,915,984	1.82							
Maintenance Labor		1,084,274	1.08							
Power		2,100,000	2.10							
Reagents and Consumables		5,306,407	5.31							
Spares		1,712,329	1.71							
Assays		100,000	0.10							
	Totals	12,118,994	12.12							

Table 8: Process Operating Cost for PMI Type A

Type A (Au< 1.5 g/t Au, Zn< 1.5%) Bulk Flotation no FTL										
Category	Cost									
		Annual US\$	Unit US\$/t Ore							
Operating Labor		1,915,984	1.82							
Maintenance Labor		1,084,274	1.08							
Power		2,100,000	2.10							
Reagents and Consumables		2,443,723	2.44							
Spares		1,712,329	1.71							
Assays		100,000	0.10							
	Totals	9,256,310	9.26							

The plant has been designed to batch all three PMI types by bypassing the Cu-Pb and Zn flotation and/ or the FTL circuit. An availability of 90% has been assumed for the flotation circuit. Given the

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

slightly different flowsheets, the three types of PMI have different reagent consumption which drives process costs. Annual and LOM operating costs for the process and surface infrastructure for the three types of PMI are shown in Table 6, Table 7 and Table 8 (previous page).

Opportunities

The Company has identified several clear and material opportunities for improvement of the Scoping Study outcome which are currently under evaluation. These include:

- A low-grade zinc concentration pathway, based on a recent flotation test on a composite grading 0.36% Zn which produced a saleable Zn concentrate grading 48% Zn. Based on prior flotation test work, an assumption was used in the Study that an economic zinc concentrate was only achievable from at a grade >1.5% Zn. The MRE contains approximately 267,000t of zinc of which only 70,000t is accessed in the Scoping Study mine plan. The ability to economically recover part of the additional 197,000t of zinc in the MRE could significantly enhance economics, given the recovered portion of the ~70,000t of zinc generates US\$132m revenue based on the Study forecasts.
- Further improvement to the underground stope optimisation, development sequence and production scheduling. The underground stope optimisation was undertaken using an assumption of US\$1700/oz gold. Additionally, some improvements in production and development unit costs in the order of 10-20% have already been identified in the intervening period since running the stope optimisation. These improvements in production and development costs are yet to be incorporated into the optimisation, and are likely to result in additional stopes being included in the mine plan. Additionally, optimisation included a Pseudoflow analysis on the underground design to remove uneconomic areas that sit above the stope cut-off grade. Pseudoflow removed 832kt containing 72,000 oz AuEq³ from the underground mine plan that may be profitable at current spot prices and revised operating costs.
- The improvement in underground optimisation includes reviewing the staging of development during the pre-production period to optimise CAPEX whilst trading off against ensuring access to the highest value stopes in early phases of the UG mine.
- Recovery of the 30-metre crown pillar design which has been left between the base of the open pits and the underground workings. This crown pillar design contains approximately 15,000 Oz AuEq³. The study currently assumes no recovery of this crown pillar, however additional geotechnical information may support the recovery of this crown pillar.
- Inclusion of a heap leaching option which provides a process path for a significant proportion (~50%) of the MRE that was excluded in the high-grade/ low-tonnage SS production model. Preliminary column testing on a low-grade composite yielded promising results. As a result of this, a panel of column tests were initiated to test the three material types separately at a range of different head grades. Results from this current panel of column tests will not be available until December 2023, but a positive outcome has potential to add significant value to the project.
- Reduction in open pit mining unit cost through owner-operator and bulk mining efficiencies.
 A unit cost of US\$3.00/ t was assumed for the Study, initially as a conservative estimate based

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

on the predicted reduced scale of the open pit operation, and later to account for contractor premiums. However, preliminary first-principles cost modelling by the Company, and discussions with equipment vendors around collaboration and operating partnerships, indicates that an owner operated unit cost around US\$2.00/t may be achievable at scale. This impact of a reduced mining unit cost is even more pronounced in a high-volume mining scenario that incorporates a low-grade heap leach. This cost estimate is supported by localised benchmarking at other owner-operator OP mines in Argentina.

Potential processing of the Au-Ag concentrate on site to produce gold and silver dore via high intensity leach. This could remove costs associated with the transport and treatment (TC/RC) of the forecast LOM production of 412kt of Au-Ag concentrate and improve payability.

On site upgrading of Au-Ag Concentrate to Dore

Subsequent to the Scoping Study the Company reported results from a metallurgical testwork program undertaken to evaluate the opportunity to upgrade the Au-Ag concentrate produced in the Hualilan bulk flotation circuit into doré.

The process route for the Hualian Gold Project involves crushing, milling, gravity recovery of gold, conventional flotation, and flotation tailings leach (FTL). This produces a high-grade Zn-Au-Ag concentrate, a high-grade Pb-Au-Ag concentrate, gold-silver doré, and an Au-Ag concentrate.

The majority of the gold and silver produced at Hualilan is via the Au-Ag concentrate, which comprises the cleaner Au-Ag concentrate combined with the gravity-recovered-gold (GRG) concentrate. This combined Au-Ag concentrate contains approximately 81% of the forecast annual production of 116 koz Au and 65% of the annual 440 koz Ag. The Au-Ag concentrate will likely be sold to off-takers in Asia, with forecast costs of US\$150/t to transport the concentrate, and concentrate Treatment and Refining charges (TC/RC's) of approximately US\$100/t.

Thus, the ability to produce gold-silver doré bars onsite will remove the transport and TC/RC costs associated with the 412,000 t of Au-Ag concentrate produced over the Scoping Study LOM, thereby significantly improving project economics. Additionally, the payability for doré (99.5% Au and 97.5% Ag) compares favourably to the forecast payability of the Au-Ag concentrate (95% Au and 60% Ag).

The Company has identified a low-cost and simple process option which would potentially allow for doré production on site from the Au-Ag concentrate. This involves a fine grind of the Au-Ag concentrate, followed by an intensive cyanide leach cycle to recover the Au and Ag, with the pregnant leach solution (PLS) containing the Au and Ag added to the existing carbon-in-leach (CIL) circuit, which is required for the FTL process.

To test this potential process option, a representative sample of the Au-Ag concentrate was prepared from a combination of Au-Ag cleaner concentrates which were produced during flotation test-work. Two charges of this representative Au-Ag cleaner concentrate underwent an intensive leach at SGS Laboratories in Lakefield. The first sample at the existing size of 40 μ m P₈₀ grind and the second at 16.7 μ m P₈₀ grind. The results are outlined in Table 9 below. The recovery of 96% of the gold from the

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

concentrate at 16.7-micron grind indicates an increase in overall Au payability from 95% via the concentrate to 95.75% via the doré option.

Operating costs associated with the fine grind and the intensive leach cycle, including cyanide consumption of 30.7 kg NaCN/t of concentrate processed, are anticipated to be less than US\$100/t Au-Ag concentrate. This will result in a net cost saving of at least US\$150/t, in addition to the uplift in Au payability. Additional testwork, including a pre-oxidation stage, is expected to further reduce the reagent consumption and associated costs of the intensive leach.

The results for Ag recovery remain pending, however any recovery above the 60% payability for Ag in the Au-Ag concentrate provides additional upside. The gravity-recovered-gold concentrate will also be converted to doré on site, likely via an Acacia reactor. The CAPEX and OPEX associated with this will be minor, considering the small amount (3.5 kt of GRG concentrate) that will be processed annually.

Sample Name	CN Test #	Size P ₈₀	Reagent Addition		Reagent Consumption		Free CN*	Au Extraction, %		Au Residue, g/t		Au Heac g	· ·		
		μ	NaCN, kg/t	CaO, kg/t	NaCN, kg/t	CaO, kg/t	mg/L	24 h	48 h	72 h	Cut A	Cut B	Average	Calc'd	Direct
Comb Flot Conc	CN17	40	23.5	27.1	19.7	26.8	692	84	91	92.5	1.76	1.77	1.77	24.5	
Comb Flot Conc	CN18	16.7	33.6	12.4	30.7	12.4	510	95	86	96	0.94	0.93	0.94	22.8	

Table 9 - Results Intensive Leach Testing Au-Ag Cleaner concentrate.

Next Steps

Next steps to add to the robustness of the current project and provide a pathway for future development for the project include:

- Analysis of the results for the suite of Column Leach tests are currently underway, which will allow for an assessment of the viability of Heap Leach as a potential processing pathway for the low-grade mineralisation. Additionally, a second suite of Column leach tests at half and one inch crush sizes has commenced with the results of these 90-day tests due in April;
- Completion of additional flotation testing on the potential low-grade zinc concentration pathway;
- Completion of additional flotation testing, including locked-cycle and variability test work, which will be required to provide sufficient data for the PFS;
- Additional intensive-leach tests on the representative concentrate sample to optimise for grind size and reagent consumption against Au-Ag recovery. This will allow the Company to maximise the improvement in projected economics from the production of doré on site..
- Development of a detailed first-principles open pit mining cost model, in collaboration with equipment vendors, to evaluate the potential owner operated bulk mining efficiencies;
- Completion of a suite of CIL test work (with dual-laboratory verification) to allow Au and Ag recoveries and NACN consumption to be modelled for both the high-grade and low-grade mineralisation, thereby allowing for a definitive evaluation of the CIL processing option;

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

- Update the first-principle cost models for the processing and general and administrative areas such that they can be utilised to assess the cost impact of variable process throughputs;
- Update the processing cost model to be inclusive of heap leaching, should the Column Test results be positive;
- Complete geotechnical data gathering, including: additional core logging; collection of Point Load Test data from existing drill core; gathering of televiewer data from existing drill holes; and, any drilling of additional geotechnical test holes;
- Updating the underground stope optimisation for final underground mining and development cost forecasts;
- Further optimisation of the open pit/ underground interface and which components of the orebody should be included in each; and,
- Additional drilling of some of the drill targets identified in the Hualilan regional exploration programme.

REGIONAL EXPLORATION PROGRAM

During the Quarter, the Company continued its "Regional" exploration program at Hualilan. This Regional Program is designed to explore for potential Hualilan repeats, initially along the 30 kilometres of prospective strike near the contact between the intrusives and sediments, the zone that hosts the current Hualilan MRE.

During the quarter the program was extended for a third time due to encouraging results. With several new targets developing. These new targets include:

- A gold In soil anomaly approximately 4 kilometres north of and on strike with the current MRE where coincident surface mineralisation in limestones has been Identified
- Gold anomalies on two of the three reconnaissance Ion Leach traverses 5 kilometers northeast and 6 kilometers southeast of the current MRE
- A 3-kilometre copper anomaly some 10 kilometers southeast of Hualilan which is coincident on the only two Ion Leach traverses in the area

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

EL GUAYABO GOLD AND COLORADO V GOLD/COPPER PROJECT - ECUADOR

43-101 Technical Report

During the guarter the Company commissioned an Independent technical report on the Project done in accordance with the National Instrument 43-101 which sets out the requirements for the preparation and content of a technical report in Canda. This report will incorporate an updated Mineral Resource Estimate done in compliance with the 43-101 framework.

Rock-Saw Channel Sampling Program

The surface rock-saw Channel Sampling program has been designed to test for the extensions of mineralisation to surface in the upper 200 metres of the GY-A anomaly which forms a steep hill.

The rock-saw sampling is completed using a rock saw to cut and recover a continuous channel measuring approximately 4cm x 4cm along any outcrop. The 4cm x 4cm sample weight averages 4.8 kg per metre, approximately the same as the NQ sized drill core in the El Guayabo Project drill program. The samples are logged and submitted for assay with QAQC samples (duplicates, blanks, and standards) using the same procedure as drill core. This program has been completed with assays for the final 25% of the program pending.

Surface Mapping

During the guarter surface mapping continued north-east of the CV-A and CV-B anomalies on the Colorado V concession. Mapping indicated the extension of alteration and breccia bodies along strike from CV-A (results include 528.7m at 0.5 g/t AuEq² - 0.3 g/t Au, 2.0 g/t Ag, 0.1 % Cu including 397.1m at 0.6 g/t AuEq² - 0.3 g/t Au, 2.8 g/t Ag, 0.1% Cu) and CV-B (results include 570.0m at 0.4 g/t AuEq² - 0.2 g/t Au, 2.0 g/t Ag, 0.1% Cu including 306.0m at 0.5 g/t AuEq² - 0.2 g/t Au, 2.3 g/t Ag, 0.1% Cu) and the tenement boundary with Lumina Golds Cangrejos deposit. .

Surface mapping in the vicinity of the CV-D and CV-E anomalies has indicated the presence of outcropping breccia which appears consistent with the breccia's containing higher-grade mineralisation at GY-A and GY-B in the current MRE. This breccia has been identified over approximately 200 square meters at surface with the interpreted steeply plunging breccia body not validly tested by the three exploration holes drilled at CV-D and CV-E. This program remains ongoing. Ends

¹ AuEq information as required under JORC is provided on Page 20 of this ASX release as footnote to Table 11 (Ecuador MRE)

For further information contact:

Kris Knauer Managing Director +61 411 885 979

Sergio Rotondo **Executive Chairman** +1 (646) 462 9273 kris.knauer@challengergold.com sergio.rotondo@challengergold.com

Media Enquiries Jane Morgan + 61 405 555 618 jm@janemorganmanagement.com.au

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,261.1m shares 10m options 44.2m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005

Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant original market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

ADDITIONAL INFORMATION

COMPETENT PERSON STATEMENT – EXPLORATION RESULTS AND MINERAL RESOURCES

The information that relates to sampling techniques and data, exploration results, geological interpretation and Mineral Resource Estimate has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results and Mineral Resources. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

The Mineral Resource Estimate for the Hualilan Gold Project was first announced to the ASX on 1 June 2022 and updated 29 March 2023. The Mineral Resource Estimate for the El Guayabo Project was first announced to the ASX on 14 June 2023. The Company confirms it is not aware of any information or assumptions that materially impacts the information included in that announcement and that the material assumptions and technical parameters underpinning the Mineral Resource Estimate continue to apply and have not materially changed.

FORWARD LOOKING STATEMENTS

The announcement may contain certain forward-looking statements. Words 'anticipate', 'believe', 'expect', 'forecast', 'estimate', 'likely', 'intend', 'should', 'could', 'may', 'target', 'plan', 'potential' and other similar expressions are intended to identify forward-looking statements. Indication of, and guidance on, future costings, earnings and financial position and performance are also forward-looking statements.

Such forward looking statements are not guarantees of future performance, and involve known and unknown risks, uncertainties and other factors, many of which are beyond the control of Avanco Resources Ltd, its officers, employees, agents and associates, which may cause actual results to differ materially from those expressed of implied in such forward-looking statements. Actual results, performance, or outcomes may differ materially from any projections or forward-looking statements or the assumptions on which those statements are based.

You should not place any undue reliance on forward-looking statements and neither. Avanco nor its directors, officers, employees, servants or agents assume any responsibility to update such information. The stated Production Targets are based on the Company's current expectations of future results or events and should not be relied upon by investors when making investment decisions. Further evaluation work and appropriate studies are required to establish sufficient confidence that this target will be met.

Financial numbers, unless stated as final, are provisional and subject to change when final grades, weight and pricing are agreed under the terms of the offtake agreement. Figures in this announcement may not sum due to rounding. All dollar amounts in this report refer to United States Dollar unless otherwise stated.

SCOPING STUDY

All references to the Scoping Study and its outcomes in this report relate to the announcement dated 8 November 2023 "Hualilan Gold Project Scoping Study". Please refer to that announcement for full details and supporting information.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Domain	Category	Mt	Au (g/t)	Ag (g/t)	Zn (%)	Pb (%)	AuEq (g/t)	AuEq (Mozs)
US\$1800 optimised shell > 0.30 ppm AuEq	Indicated	45.5	1.0	5.1	0.38	0.06	1.3	1.9
	Inferred	9.6	1.1	7.3	0.43	0.06	1.4	0.44
Below US\$1800 shell >1.0ppm AuEq	Indicated	2.7	2.0	9.0	0.89	0.05	2.5	0.22
	Inferred	2.8	2.1	12.4	1.1	0.07	2.8	0.24
Total		60.6	1.1	6.0	0.4	0.06	1.4	2.8

Table 10: Hualilan Hold Project Mineral Resource Estimate (March 2023)

Note: Some rounding errors may be present

¹ Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1900 Oz, Ag US\$24 Oz, Zn US\$4,000/t, Pb US\$2000/t
- Metallurgical recoveries are estimated to be Au (95%), Ag (91%), Zn (67%) Pb (58%) across all ore types (see JORC Table 1 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: AuEq (g/t) = Au (g/t) + [Ag (g/t) x 0.012106] + [Zn (%) x 0.46204] + [Pb (%) x 0.19961]
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Domain	Category	Mt	Au (g/t)	Ag (g/t)	Cu (%)	Mo (ppm)	AuEq (g/t)	AuEq (Mozs)
US\$1800 optimised shell > 0.3 g/t AuEq	Inferred	212.2	0.36	2.8	0.07	6.5	0.50	3.4
Below US\$1800 shell >0.4 g/t AuEq	Inferred	56.5	0.46	1.8	0.07	7.5	0.59	1.1
Total	Inferred	268.7	0.38	2.6	0.07	7.2	0.52	4.5

Table 11: El Guayabo Interim MRE, June 2023

Note: Some rounding errors may be present

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1800 Oz, Ag US\$22 Oz, Cu US\$9,000/t, Mo US\$44,080/t
- Metallurgical recoveries are estimated to be Au (85%), Ag (60%), Cu (85%) Mo (50%) across all ore types (see JORC Table 1 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: AuEq (g/t) = Au (g/t) + [Ag (g/t) x 0.012222] + [Cu (%) x 1.555] + [Mo (%) x 4.480026]
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Project	Property Name	Tenure Title	Interest	Area	DNPM No	Status of
		Holder	%	(ha)	of Area	Tenure
	El Guayabo	Torata Mining	1000/	201	000335	Granted
El Guayabo		Resources S.A Goldking Mining	100%	281	COD225	
El Guayabo	Colorado V	Company S.A	earning 50%	2331	COD3363.1	Granted
El Guayabo	El Guaybo 2	Mr. Segundo Ángel Marín Gómez	earning 80%	957	COD300964	Granted
Hualilan	Divisadero	Golden Mining S.R.L.	100%	6	5448-M-1960	Granted
Hualilan	Flor de Hualilan	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pereyra y Aciar	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Bicolor	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Sentazon	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Muchilera	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Magnata	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pizarro	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	La Toro	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	La Puntilla	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pique de Ortega	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Descrubidora	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pardo	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Sanchez	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Andacollo	CIA GPL S.R.L.	as above	6	5448-M-1960	
Hualilan	North of "Pizarro" Mine	Golden Mining S.R.L.	as above	1.9	<u> </u>	Granted Granted
Hualilan	South of "La Toro" Mine	CIA GPL S.R.L.	as above	1.9	195-152-C- 1981	Granted
Hualilan	Josefina	Golden Mining S.R.L.	as above	2570	30.591.654	Granted
Hualilan		Armando J. Sanchez	100% Option	721.90	414-998-M-05	Granted
Hualilan	Guillermina	Armando J. Sanchez	100% Option	2,921.05	1124-045-S-19	Granted
Hualilan	Agu 3	Armando J. Sanchez	100% Option	1,500.00	1124-114-S-14	Granted
Hualilan	Agu 5	Armando J. Sanchez	100% Option	1443.50	1124-343-S-14	Granted
Hualilan	Agu 6	Armando J. Sanchez	100% Option	1500.00	1124-623-S-17	Granted
Hualilan	Agu 7	Armando J. Sanchez	100% Option	1459.00	1124-622-S-17	Granted
Hualilan	El Petiso	Armando J. Sanchez	100% Option	18.00	2478-C-71	Granted

Appendix 1 - Schedule of Tenements

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

Appendix 2 - ASX Waivers

The ASX granted the Company a waiver from ASX Listing Rule 7.3.2 to permit the notice of meeting (the "Notice") seeking shareholder approval for the issue of up to 245,000,001 fully paid ordinary shares in the Company ("Waiver Securities") upon the Company satisfying the milestones in relation to each of the Projects ("Milestones") not to state that the Waiver Securities will be issued within 3 months of the date of the shareholder meeting.

The Waiver Securities must be issued no later than 60 months after the date of reinstatement of the Company's securities to official quotation.

All Waiver Securities agreements were amended, received shareholder approval and have been issued.

Performance Shares

The Company issued 60,000,000 Class A Performance Shares and 60,000,000 Class B Performance Shares.

A summary of the terms and conditions of the Performance Shares are as follows:

The Performance Shares shall automatically convert into Shares, provided that if the number of Shares that would be issued upon such conversion is greater than 10% of the Company's Shares on issue as at the date of conversion, then that number of Performance Shares that is equal to 10% of the Company's Shares on issue as at the date of conversion under this paragraph will automatically convert into an equivalent number of Company Shares. The conversion will be completed on a pro rata basis across each class of Performance Shares then on issue as well as on a pro rata basis for each Holder. Performance Shares that are not converted into Shares under this paragraph will continue to be held by the Holders on the same terms and conditions.

(No Conversion if Milestone not Achieved): If the relevant Milestone is not achieved by the required date (being seven years from the date of the Proposed Acquisition or such other date as required by ASX), then all Performance Shares held by each Holder shall lapse.

(After Conversion): The Shares issued on conversion of the Performance Shares will, as and from 5.00pm (WST) on the date of issue, rank equally with and confer rights identical with all other Shares then on issue and application will be made by the Company to ASX for official quotation of the Shares issued upon conversion (subject to complying with any restriction periods required by the ASX). (Milestones):

The Performance Shares will, convert upon the satisfaction of the following milestones:

(Class A): A JORC Compliant Mineral Resource Estimate of at least Inferred category on either Project of the following: a minimum 500,000 ounces of gold (AU) or Gold Equivalent (in accordance with clause 50 of the JORC Code) at a minimum grade of 6 grams per tonne Gold Equivalent; or

a minimum 1,500,000 ounces of gold (AU) or Gold Equivalent (in accordance with clause 50 of the JORC Code) at a minimum grade of 2.0 grams per tonne Gold Equivalent; or

a minimum 3,000,000 ounces of gold (AU) or Gold Equivalent (in accordance with clause 50 of the JORC Code) at a minimum grade of 1.0 grams per tonne Gold Equivalent.

(Class B): The Class B Performance Shares held by the holder will convert into an equal number of Shares upon the Company:

Completion and announcement by CEL (subject to the provision of information allowable at the time of completion) of a positive Scoping Study (as defined in the JORC Code) on either Project by an independent third-party expert which evidences an internal rate of return of US Ten Year Bond Rate plus 10% (using publicly available industry assumptions, including deliverable spot commodity / mineral prices, which are independently verifiable) provided that the total cumulative EBITDA over the project life is over US\$50m.

Class A Performance Shares and Class B Performance Shares have vested, with 60 million ordinary shares issued on 14 April 2023 and 60 million ordinary shares issued on 8 November 2023.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

About Challenger Gold

Challenger Gold Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America with the Company's flagship Hualilan Gold Project in San Juan, Argentina containing resources of **2.8 million ounces gold equivalent**.

The Company strategy is for the 100% owned Hualilan Gold Project to provide a high-grade low capex operation in the near term while it prepares for larger bulk gold operation at El Guayabo in Ecuador.

- Hualilan Gold Project, located in San Juan Province Argentina, is a near term development opportunity. It has extensive drilling with over 150 historical and almost 900 CEL drill-holes. The Company has released a JORC 2012 Compliant resource of 2.8 Moz AuEq which remains open in most directions. This resource contains a high-grade core 9.9 Mt at 5.0 g/t AuEq for 1.6 Moz AuEq and 29.1Mt at 2.2 g/t AuEq for 2.4 Moz AuEq within a larger MRE of 60.6 Mt at 1.4 g/t AuEq for 2.8 Moz AuEq. The resource was based on approximately 240,000 metres of CEL drilling. Drill results have included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 67.7m @ 7.3 g/t Au, 5.7 g/t Ag, 0.6% Zn, and 63.3m @ 8.5 g/t Au, 7.6 g/t Ag, 2.8% Zn. This drilling intersected high-grade gold over 3.5 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. The high-grade skarn mineralisation is underlain by a significant intrusionhosted gold system with intercepts including 209.0m at 1.0 g/t Au, 1.4 g/t Ag, 0.1% Zn and 110.5m at 2.5 g/t Au, 7.4 g/t Au, 0.90% Zn in intrusives. The Hualilan Scoping Study demonstrates production of 116,000 oz Au, 440,000 oz Ag, 9175t Zn (141,000 oz AuEq) at an ASIC of US\$830/oz over an Initial 7 year mine life. CEL's current program will include a Pre-Feasibility Study, and regional exploration along the previously unexplored 30 kilometres of prospective stratigraphy.
- 2. El Guayabo Gold/Copper Project covers 35 sq kms in southern Ecuador and is located 5 kilometres along strike from the 20.5 million ounce Cangrejos Gold Project¹. Prior to CEL the project was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections including 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t Ag which have never been followed up. CEL's maiden drilling program confirmed the discovery of a major Au-Cu-Ag-Mo gold system spanning several zones of significant scale. The Company has drilled thirteen regionally significant Au-soil anomalies with over 500 metres of mineralisation intersected at seven of these thirteen anomalies, confirming the potential for a major bulk gold system at El Guayabo. The Company reported a maiden 4.5 Moz gold equivalent MRE. This MRE is based on 34 drill holes, for 22,572 metres, from the Company's Phase 1 and 2 diamond core drill program at its 100% owned El Guayabo concession. The drilling has focussed on 2 of the 7 anomalies that have returned plus 500 metre drill intercepts and mineralisation remains open in all directions.

¹ Source : Lumina Gold (TSX : LUM) July 2020 43-101 Technical Report

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data -Hualilan Project

(Criteria in this section apply	to all succeeding sections.)
---------------------------------	------------------------------

Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard 	Diamond core (HQ3 and NQ3) was cut longitudinally on site using a diamond saw or split using a hand operated hydrau core sampling splitter. Samples lengths are generally from 0.5m to 2.0m in length (average 1.74m). Sample lengths ar selected according to lithology, alteration, and mineralization contacts.
	measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes,	For reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled were collected from a face sample recover cyclone mounted on the drill machine.
	or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of	Channel samples are cut into underground or surface outcrop using a hand-held diamond edged cutting tool. Parallel cuts 3-5cm apart are cut 2-4cm deep into the rock which allows for the extraction of a representative sample using a hammer and chisel. The sample is collected onto a plastic mat and collected into a sample bag.
	sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any	Core, RC and channel samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sample was tak and pulverized to 85% passing 75µm. A 50g charge was analysed for Au by fire assay with AA determination. Where t fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination.
	 measurement tools or systems used. Aspects of the determination of mineralisation that are Material to 	A 10g charge was analysed for at least 48 elements by 4-acid digest and ICP-MS determination. Elements determined include Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr.
	the Public Report. In cases where 'industry standard' 	For Ag > 100 g/t, Zn, Pb and Cu > 10,000 ppm and S > 10%, overlimit analysis was done by the same method using a different calibration.
	work has been done this would be relatively simple (eg 'reverse	Unused pulps are returned from the laboratory to the Project and stored in a secure location, so they are available for further analyses. Remaining drill core is stored undercover for future use if required.
	circulation drilling was used to obtain 1 m samples from which 3 kg	Visible gold observed has been observed in only 1 drill core sample only. Coarse gold is not likely to result in sample b
	was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent	Historic Data: There is little information provided by previous explorers to detail sampling techniques. Selected drill core was cut wi diamond saw longitudinally and one half submitted for assay. Assay was generally done for Au. In some drill campaig Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling.
	sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	

ACN 123 591 382 ASX: CEL 1,261.1m shares 10m options 44.2m perf rights

Level 1 1205 Hay Street West Perth WA 6

 Australian Registered Office
 Direc

 Level 1
 Kris K

 1205 Hay Street
 Sergic

 West Perth WA 6005
 Sonia

 Flerch
 Sergic

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec. Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, 	CEL drilling of HQ3 core (triple tube) was done using various truck and track mounted drill machines that are operated by various drilling contractors based in Mendoza and San Juan. The core has not been oriented as the rock is commonly too broken to allow accurate core orientation.
	sonic, etc) and details (eg core diameter, triple or standard tube,	CEL drilling of reverse circulation (RC) drill holes was done using a track-mounted LM650 universal drill rig set up for reverse circulation drilling. Drilling was done using a 5.25 inch hammer bit.
	depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	Collar details for historic drill holes, DD drill holes, RC drill holes completed by CEL that are used in the resource estimate are detailed in CEL ASX releases: 1 June 2022 (Maiden MRE): <u>https://announcements.asx.com.au/asxpdf/20220601/pdf/459jfk8g7x2mty.pdf</u> and 29 March 2023 (MRE update): <u>https://announcements.asx.com.au/asxpdf/20230329/pdf/45n49jlm02grm1.pdf</u>
		Collar locations for drill holes are surveyed using DGPS. Three DD holes and 3 RC holes have hand-held GPS collar surveys.
		Historic Data: Historic drill hole data is archival, data cross checked with drill logs and available plans and sections where available. Collar locations have been checked by CEL using differential GPS (DGPS) to verify if the site coincides with a marked collar, tagged drill site or likely drill pad location. In most cases the drill collars coincide with historic drill site, some of which (but not all) are tagged. The collar check surveys were reported in POSGAR (2007) projection and converted to WGS84.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	Drill core is placed into wooden boxes by the drillers and depth marks are indicated on wooden blocks at the end of each run. These depths are reconciled by CEL geologists when measuring core recovery and assessing core loss. Triple tube drilling has been being done by CEL to maximise core recovery.
	- Measures taken to maximise sample recovery and ensure representative	 761 CEL diamond drill holes completed have been used for the CEL resource estimate. Some of these holes are located outside the resource area.
	nature of the samples. Whether a relationship exists 	Total drilled is 224,180.60 metres, including cover drilled of 22,041.30 metres (9.8 %).
	between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Of the remaining 202,139.30 metres of bedrock drilled, core recovery is 96.8%. RC sub-samples are collected from a rotary splitter mounted to the face sample recovery cyclone. A 2-4 kg sub-samples is collected for each metre of RC drilling. Duplicate samples are taken at the rate of I every 25-30 samples using a riffle splitter to split out a 2-4 kg sub-sample. The whole sample recovered is weighed to measure sample recovery and consistency in sampling.
		 37 CEL RC drill holes have been used in the CEL resource estimate. Total metres drilled is 2,923m. Cover drilled is 511 m (17.5%) Channel samples have been weighed to ensure a consistency between sample lengths and weights. The channel samples are collected from saw-cut channels and the whole sample is collected for analysis. There is no correlation between sample length and assay values.
		 193 surface and underground channels have been used in the CEL resource estimate. Channels total 2597.70 metres in length. The average weight per metre sampled is 3.7 kg/m which is adequate

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commenta	ry								
		A possible r low recover by the inter	elationship ries have res nsity of natu	has been ulted low ral fractu	observed ir er reportec ring in the r	historic dri values. His ock. A posit	lling betwee storic core re	n sample rec covery data i on between	nt for ½ cut HC overy and Au is incomplete. recovery and I rralisation.	Ag or Zn valı Core recov	ues whereb ery is influe
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of 	mineralizati metallurgica geological n logging is do cloud-baseo No specialis Detailed log	ion, and stru al test work nodelling re one into MS d database v st geotechni gs are availa storic drillin	RC drill source es Excel in a vhich hold cal loggin ble for me g have be	a level that chips are lo timation an format that ds all drill ho g has been ost of the hi	is suitable fo gged for geo od metallurg at can readil- ole logging s undertaken. istorical drill	or geological blogy, alterat ical test worl y be cross-ch ample and a ling. Some lo	modelling, N ion and mine k. Where po ecked and is ssay data. gs have not	D, weathering, Aineral Resour eralisation to a ssible logging back-up trans been recovere storage and r	rce Estimatic a level that is is quantitati sferred to a s ed. No core	on and suitable fo ve. Geolog secure, offs photograph
	the relevant intersections logged.										
Sub-sampling techniques and sample preparation	 If core whether cut or sawn and whether quarter half or all core taken. 		in San Juan f	or sample	e preparatio		,		oratory in Me e is considere		
sumple preparation	 If non-core whether riffled tube 	Sample size	s are appro	oriate for	the minera	lisation style	e and grain si	ze of the dep	oosit.		
	sampled rotary split etc and whether sampled wet or dry. - For all sample types the nature quality and appropriateness of the sample preparation technique.	of the core	are selected interval in :	l. Sample 1 drill hole	length ave e only and f	rages 1.74m for some me	n. Second-ha	lf core or ¼ c	oundaries. Re core samples h second half of	nave been su	bmitted fo
	- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	•	l or a manua	l core spl	it press. Th	-			the core. Soft where the saw	•	-
	 Measures taken to ensure that the sampling is representative of the in- situ material collected including for 		073 and lat	er holes,	, duplicate co		consisting of	two ¼ core	samples over	the same int	erval have
	instance results for field	Duplicate co	ore sample i	esults an	d correlatio	on plots (log	scale for Au,	Ag, Zn, Pb, F	e and S) are sl	hown below	:
	duplicate/second-half sampling.		count	RSQ	m	ean	med	lian	varia	nce	
	 Whether sample sizes are appropriate to the grain size of the 				original	duplicate	original	duplicate	original	duplicate	
	material being sampled.	Au (ppm)	3,523	0.960	0.076	0.077	0.007	0.006	0.640	0.816	
591 382	Issued Capital Australian Register 1,261.1m shares Level 1 10m options 1205 Hay Street 14.2m perf rights West Perth WA 6005		Directors Kris Knauer, MI Sergio Rotondo Sonia Delgado, Fletcher Quinn	, Chairman Executive D , Non-Exec D	T: E: rector irector	o ntact +61 8 6380 923 admin@challen					

Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

teria	JORC Code explanation	Commentary	/								
		Ag (ppm)	3,523	0.696	0.53	0.48	0.17	0.16	7.99	3.55	
		Cd (ppm)	3,523	0.979	1.34	1.26	0.08	0.08	160.63	144.11	
		Cu (ppm)	3,523	0.451	14.84	13.85	3.40	3.30	4.3E+03	2.5E+03	
		Fe (%)	3,523	0.990	1.997	1.996	1.700	1.710	3.74	3.75	
		Pb (ppm)	3,523	0.940	64.7	62.4	13.7	13.4	1.9E+05	2.7E+05	
		S (%)	3,523	0.973	0.333	0.330	0.140	0.140	0.346	0.332	
		Zn (ppm)	3,523	0.976	254	243	73	72	3.8.E+06	3.5.E+06	
		RSQ = R square	ed	I		I		I		I	
		Hualilan [D - Duplicate S	amples - Au (ppm)		Hualilan DD -	Duplicate Samples - /	Ag (ppm)	Hualila	n DD - Duplicate Samp	les - Zn (ppm)
		100			•	1000			100000		
		10				100			10000		
		a,	•			e 10			a		
		1 Indicat	•			10 10 10 10 10 10 10 10 10 10 10 10 10 1		•	0001 Dlicate		
		ndn (mdd) 0.1							dng (шdd) uz		
		dd 0.1	100 C			dd) 89 0.1			dd) 100		•
			े ्रस	•••			278°		2	Sec. 1	
		0.01				0.01			10		
		0.001				0.001					
			0.01 0.1	1 10	100	0.001 0.01	0.1 1 10	100 1000	1		000 10000
			Au (ppm) C	Driginal			Ag (ppm) Original			Zn (ppm) Origina	al
			DD - Duplicate S	amples - Pb (ppm)			D - Duplicate Sample	es - Fe (pct)		alilan DD - Duplicate Sa	amples - S (pc
		10000			•	100			100		
								••			
		1000	•			10			10		
		001 EC.				ate			ate		
		Dupli		2				-	Ouplic		3
		100 100 100 10 10 10	<u> </u>	S 8 %					1 Duplicate		•
		Pb(<u>•</u>			s	•	
		1	State .			0.1	.		0.01		•
						•••				• • • • •	
		0.1				0.01			0.001		
		0.1	1 10 Pb (ppm) C	100 1000 Driginal	10000	0.01 0.	1 1 Fe (pct) Original	10 100	0.001	0.01 0.1 S (pct) Original	1 10

RC sub-samples over 1m intervals are collected at the drill site from a cyclone mounted on the drill rig. A duplicate RC sample is collected for every 25-30m drilled.

Issued Capital 1,261.1m shares 10m options 44.2m perf rights

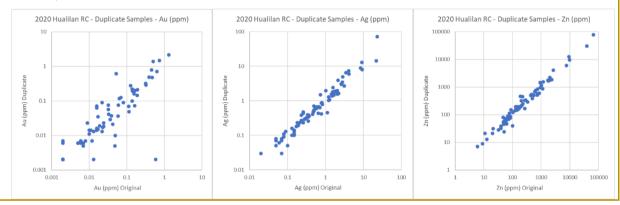
Australian Registered Office Level 1

1205 Hay Street

West Perth WA 6005

ce Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

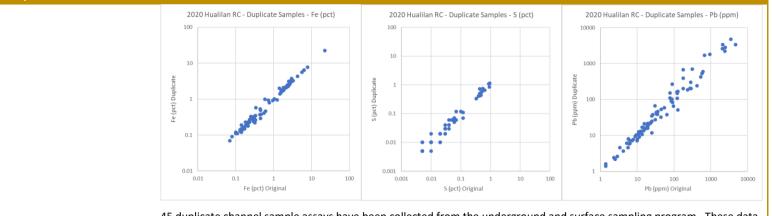

Criteria JORC Code explanation

Commentary

The duplicate RC sample results and correlation plots (log scale for Au, Ag, Zn, Pb, Fe and S) are shown below:

originalduplicateoriginalduplicateoriginalduplicateAu (ppm)850.7990.1010.1400.0170.0160.0410.115Ag (ppm)850.6911.742.430.590.5813.5964.29Cd (ppm)850.98915.5116.340.410.4441894737Cu (ppm)850.97547.7453.865.805.702.4E+043.1E+04Fe (%)850.9971.4701.5030.4500.4107.67.6Pb (ppm)850.887296.0350.626.332.46.0E+057.4E+05S (%)850.9720.1130.1260.0200.0200.0460.062Zn (ppm)850.977339932341581772.5.E+082.1.E+08		count	RSQ	m	ean	me	dian	varia	ance
Ag (ppm)850.6911.742.430.590.5813.5964.29Cd (ppm)850.98915.5116.340.410.4441894737Cu (ppm)850.97547.7453.865.805.702.4E+043.1E+04Fe (%)850.9971.4701.5030.4500.4107.67.6Pb (ppm)850.887296.0350.626.332.46.0E+057.4E+05S (%)850.9720.1130.1260.0200.0200.0460.062				original	duplicate	original	duplicate	original	duplicate
Cd (ppm)850.98915.5116.340.410.4441894737Cu (ppm)850.97547.7453.865.805.702.4E+043.1E+04Fe (%)850.9971.4701.5030.4500.4107.67.6Pb (ppm)850.887296.0350.626.332.46.0E+057.4E+05S (%)850.9720.1130.1260.0200.0200.0460.062	Au (ppm)	85	0.799	0.101	0.140	0.017	0.016	0.041	0.115
Cu (ppm) 85 0.975 47.74 53.86 5.80 5.70 2.4E+04 3.1E+04 Fe (%) 85 0.997 1.470 1.503 0.450 0.410 7.6 7.6 Pb (ppm) 85 0.887 296.0 350.6 26.3 32.4 6.0E+05 7.4E+05 S (%) 85 0.972 0.113 0.126 0.020 0.020 0.046 0.062	Ag (ppm)	85	0.691	1.74	2.43	0.59	0.58	13.59	64.29
Fe (%) 85 0.997 1.470 1.503 0.450 0.410 7.6 7.6 Pb (ppm) 85 0.887 296.0 350.6 26.3 32.4 6.0E+05 7.4E+05 S (%) 85 0.972 0.113 0.126 0.020 0.020 0.046 0.062	Cd (ppm)	85	0.989	15.51	16.34	0.41	0.44	4189	4737
Pb (ppm) 85 0.887 296.0 350.6 26.3 32.4 6.0E+05 7.4E+05 S (%) 85 0.972 0.113 0.126 0.020 0.020 0.046 0.062	Cu (ppm)	85	0.975	47.74	53.86	5.80	5.70	2.4E+04	3.1E+04
S (%) 85 0.972 0.113 0.126 0.020 0.020 0.046 0.062	Fe (%)	85	0.997	1.470	1.503	0.450	0.410	7.6	7.6
	Pb (ppm)	85	0.887	296.0	350.6	26.3	32.4	6.0E+05	7.4E+05
Zn (ppm) 85 0.977 3399 3234 158 177 2.5.E+08 2.1.E+08	S (%)	85	0.972	0.113	0.126	0.020	0.020	0.046	0.062
	Zn (ppm)	85	0.977	3399	3234	158	177	2.5.E+08	2.1.E+08

RSQ = R squared


Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

Criteria JORC Code explanation

Commentary

45 duplicate channel sample assays have been collected from the underground and surface sampling program. These data show more scatter due to surface weathering.

The duplicate channel sample results and correlation plots (log scale for Au, Ag, Zn, Pb, Fe and S) are shown below:

	count	RSQ	m	ean	me	dian	vari	ance
			original	duplicate	original	duplicate	original	duplicate
Au (ppm)	45	0.296	1.211	2.025	0.042	0.039	8.988	23.498
Ag (ppm)	45	0.037	8.42	23.25	1.09	1.22	177.31	3990.47
Cd (ppm)	45	0.373	124.23	77.85	7.54	7.80	61687.10	26171.51
Cu (ppm)	45	0.476	713.23	802.79	46.20	37.40	2.8E+06	3.0E+06
Fe (%)	45	0.428	4.266	5.745	1.390	1.560	44.4	107.0
Pb (ppm)	45	0.007	955.4	3776.0	75.3	60.7	3.5E+06	3.0E+08
S (%)	45	0.908	1.307	1.432	0.040	0.030	14.294	16.234
Zn (ppm)	45	0.509	15117	12684	1300	763	8.8.E+08	5.2.E+08
RSQ = R squared	d							

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
		Hualilan Channel - Duplicate Samples - Au (ppm)
Quality of assay data and laboratory tests	 The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools spectrometers handheld XRF instruments etc the parameters used in determining the analysis including instrument make and model reading times 	The MSA laboratory used for sample preparation in San Juan was inspected by Stuart Munroe (Exploration Manager) and Sergio Rotondo (CEL Director) prior to any samples being submitted. The laboratory has been visited and revied most recently by Stuart Munroe (Exploration Manager) in May 2022. The laboratory procedures are consistent with international best practice and are suitable for samples from the Project. The SGS laboratory in San Juan and the ALS laboratory in Mendoza has not yet been inspected by CEL representatives due to COVID-19 restrictions. Each laboratory presents internal laboratory standards for each job to gauge precision and accuracy of assays reported. CEL have used two different blank samples, submitted with drill core and subjected to the same preparation and assay as the core samples, RC sub-samples and channel samples. The blank samples are sourced from surface gravels in the Las Flores area of San Juan and from a commercial dolomite quarry near San Juan. In both cases the blank material is commonly for construction. Commonly, the blank samples are strategically placed in the sample sequence immediately

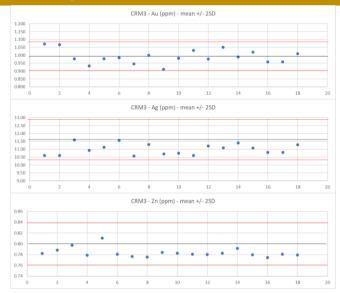
Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

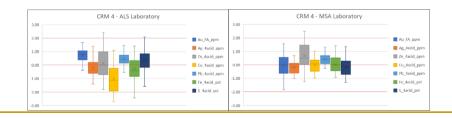
Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

calibrations factors applied and their derivation etc. - Nature of quality control procedures	after samples that were suspected of containing higher grade Au, Ag, S or base metals to test the lab preparation and contamination procedures. The values received from the blank samples suggest only rare cross contamination of samp during sample preparation.
adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	<
	3 3 3 6

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors


is observed.

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director **Contact** T: +61 8 6380 9235 E: admin@challengerex.com


submitted in 2019. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias

Criteria JORC Code explanation

Commentary

For drill holes from GNDD011 plus unsampled intervals from the 2019 drilling, 17 different multi-element Certified Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Zn. 7 different CRM's with known values for Au only have been submitted with samples of drill core, RC chips and channel samples to test the precision and accuracy of the analytic procedures of the MSA,ALS and SGS laboratories used. In the results received to date there has been no systematic bias is observed. The standards demonstrate suitable precision and accuracy of the analytic process. A summary of the standard deviations from the expected values for CRM's used is summarised below. Generally, an average of standard deviations close to zero indicates a high degree of accuracy and a low range of standard deviations with a low fail count indicates a high degree of precision.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary		
		CRM 5 - ALS Laboratory	CRM 5 - MSA Laboratory	
		2.00 1.00	Au, JA, pon Au, Avid, pon Dr. datid, pon Dr	
		CRM 6 - ALS Laboratory 1.00 2.00 4.0, 5A, ppm 2.00	CRM 6 - MSA Laboratory	
		100	27. Axid, pon Pr6. Axid, pon Pr6. Axid, pon Pr6. Axid, pon	
		1.00 CRM 7 - ALS Laboratory 2.00	CRM 7 - MSA Laboratory	
		1.00 0.00 1.00	Ac_tackd_ppn 27_tacd_ppn CQ_tacd_ppn Pb_tacd_ppn Pb_tacd_ppt S_stacd_ptt	
		3.00 CRM 8 - ALS Laboratory 3.00 T	CRM 8 - MSA Laboratory	
		2.00	Au, fA, pom Au, Avid, gom Du, Avid, gom Du, Avid, gom Po, Avid, gom Po, Avid, gom Po, Avid, gom	
		2,00 -	CRM 9 - MSA Laboratory CRM 9 - SGS	Laboratory
		2.00 T Au, FA, Japon 2.00 1.00 T T Au, FA, Japon 1.00 0.00 F F F Au, FA, Japon 1.00 1.00 F	Ac_dabid pro	Au, 1A, 5 Au, 4aki U, 4aki U, 4aki U, 4aki Pb, 4aki Fc, 4aki
		2.00 5.964 pt 2.00 -		S_4acid_f

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

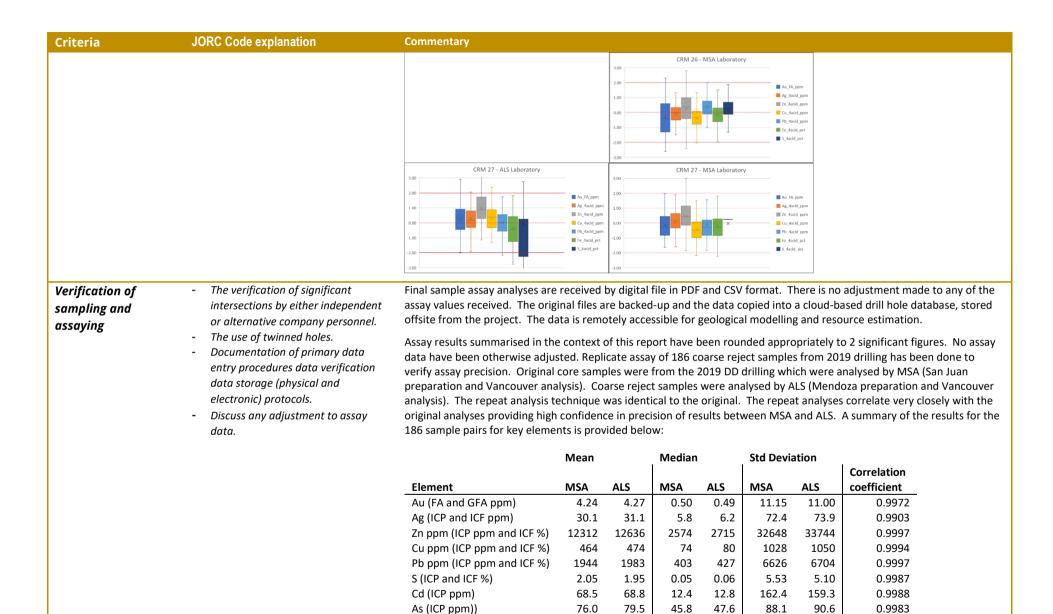
Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

riteria	JORC Code explanation	Commentary					
		CRM 10 - ALS Laboratory		CRM 10 - MSA Laboratory			
		з		3.00			
		2	Au_FA_ppm	2.00	Au_FA_ppm		
		1	Ag_4acid_ppm	1.00 T	Ag_4acid_ppm		
			Zn_4acid_ppm	0.00	7n_4acid_ppm		
			Pb_4acid_ppm		Pb_4acid_ppm		
		-1	Fe_4acid_pct	-1.00	Fe_4acid_pct		
			S_4acid_pct	-2.00	S_4acid_pct		
		3		-3.00			
		CRM 11 - ALS Laboratory		CRM 11 - MSA Laboratory			
		3		3.00			
		2	Au FA ppm	2.00	Au_FA_ppm		
			Ag 4acid ppm	1.00 T	Ag 4acid ppm		
		Ѓ Тт	Zn_4acid_ppm	T	Zn_4acid_ppm		
				0.00	Cu_4acid_ppm		
		-1	Pb_4acid_ppm	-1.00	Pb_4acid_ppm		
			Fe_4acid_pct	2.00	Fe_4acid_pct S_4acid_pct		
			5_4400_pct	-2.00	5_4800_pct		
		-3		-3.00		-	
		CRM 12 - ALS Laboratory		CRM 12 - MSA Laboratory			
		2 т	_	2.00			
		×	Au_FA_ppm Ag_4acid_ppm		Au_FA_ppm Ag_4acid_ppm		
		1	Zn_4acid_ppm	1.00 T	Zn_4acid_ppm		
		o <u></u>		0.00	Cu_4acid_ppm		
			Pb_4acid_ppm	-1.00	Pb_4acid_ppm		
		1-	Fe_4acid_pct	-100 1 1	Fe_4acid_pct		
		-2	S_4acid_pct	-2.00	S_4acid_pct		
		-3		-3.00			
		CRM 13 - ALS Laboratory		CRM 13 - MSA Laboratory		CRM 13 - SGS Laboratory	
		3.00		3.00		3.00	
		2.00	Au_FA_ppm	2.00	Au_FA_ppm	2.00	Au_F
		1.00	Ag_4acid_ppm	1.00	Ag_4acid_ppm	1.00	Ag_4
			Zn_4acid_ppm		Zn_4acid_ppm		Zn_4
			Cu_4acid_ppm Pb_4acid_ppm		Cu_4acid_ppm	0.00	Cu_4
		-1.00	Fe_4acid_pct	-1.00	Fe_4acid_pct	-1.00	Fe_4
		-2.00	S_4acid_pct	-7.00	S_4acid_pct	-2.00	5_4 a
		3.00		-3.00		-3.00	
		CRM 14 - ALS Laboratory		CRM 14 - MSA Laboratory		CRM 14 - SGS Laboratory	
		3.00		3.00 T		3.00	
		2.00	Au_FA_ppm	2.00	Au_FA_ppm	2.00 T	Au_F/
		1.00	Ag_4acid_ppm	1.00	Ag_4acid_ppm	1.00	Ag_42
			Zn_4acid_ppm		Zn_4acid_ppm		Zn_4a
		0.00	Cu_4acid_ppm Pb_4acid_ppm		Cu_4acid_ppm	0.00 T	Cu_4
		-1.00	Fe_4acid_ppm	-1.00	Fe_4acid_ppm	-1.00	Fe_4
		-2.00	S_4acid_pct	-2.00	S_4acid_pct	-2.00	S_4a
						±	

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors


Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	Commentary
		CRM 23 - ALS Laboratory CRM 24 - MISA Laboratory
		3.00 2.00 1.00
		CRM 25 - ALS Laboratory CRM 25 - ALS Laboratory CRM 25 - MSA Laboratory

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

Issued Capital 1.261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hav Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary									
		Fe (ICP %)		4.96	4.91	2.12 2	.19	6.87 6.7	2 0.9	994	
		REE (ICP ppm)		55.1	56.2	28.7 3	1.6	98.2 97.	6 0.9	954	
		Cd values >1000 are set at 1000.									
		REE is the sum off Ce, La,	Sc, Y. CE	> 500 is se	et at 500. E	Below dete	ection is s	et at zero			
		Replicate assay of 192 co	arse reiect	samples	from 2021	drilling h	as heen d	lone to verify	assav nrecisi	on Original core	
		samples were from the 20	•	•		-				-	
		•		-		• •		-			
		analysis). Coarse reject s									
		analysis technique was identical to the original. Except for Mo (molybdenum), the repeat analyses correlate clos									
		the original analyses prov	iding conf	idence in	precision	of results	between	SGS and ALS.	A summary	of the results for th	
		192 sample pairs for key	elements i	s provide	d below:						
				Mean		Medi	an	Std Devi	ation		
										Correlation	
		Element	count	SGS	ALS	SGS	ALS	SGS	ALS	coefficient	
		Au (FA and GFA ppm)	192	1.754	1.680	0.432	0.441	20.8	21.5	0.9837	
		Ag (ICP and ICF ppm)	192	12.14	11.57	0.93	1.03	7085	5925	0.9995	
		Zn (ICP and ICF ppm)	192	6829	7052	709	685	4.54E+08	5.34E+08	0.9942	
		Cu (ICP and ICF ppm)	192	203.4	202.9	25.7	24.5	3.30E+05	3.35E+05	0.9967	
		Pb (ICP and ICF ppm)	192	1768	1719	94.7	91.6	5.04E+07	4.39E+07	0.9959	
		S (ICP and ICF %)	192	2.23	2.10	0.94	0.87	16.51	15.56	0.9953	
		Cd (ICP ppm)	192	43.9	42.4	4.1	4.0	19594	18511	0.9956	
		As (ICP ppm))	192	45.4	45.2	16.0	16.9	10823	9893	0.9947	
		Fe (ICP %)	189	3.07	3.30	2.38	2.31	4.80	9.28	0.9781	
		REE (ICP ppm)	192	63.5	72.8	39.4	44.3	3414	4647	0.9096	
		Mo (ICP and ICF ppm)	192	7.69	1.68	6.74	0.97	85.83	10.33	0.3026	
		Values below detection w	vere set to	half the o	letection l	imit					
		Limit of detection for Fe v	was excee	ded for 3	samples su	ubmitted t	o SGS wit	th no overlimi	t analysis		
		REE is the sum off Ce, La,	Sc, Y. Vau	ies below	detection	were set a	at zero.				
		Dealizate eccever of 140 mm				22 alu:11 (ma	المعامة ملا				
		Replicate assay of 140 pu		•						•	
		check assay precision. Th	-	• •				-			
		Canada analysis). Replica	ite pulps w	ere analy	sed by AL	S (Lima, Pe	eru). The	analytic tech	niques were	identical at both	
		laboratories.									
				Mean		Medi	an	Std Devi	ation		
										Correlation	
		Element	count	SGS	ALS	SGS	ALS	SGS	ALS	coefficient	

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary										
		Au (FA ppm)	140	0.27	0.30	0.01	0.02	0.98	1.05	0.9829		
		Ag (ICP ppm)	140	1.16	1.14	0.16	0.16	6.15	6.31	0.9965		
		Zn (ICP ppm)	140	555	565	50	56	2471	2469	0.9996		
		Pb (ICP ppm)	140	92.3	95.4	13.6	13.5	338	351	0.9977		
		S (ICP %)	140	0.64	0.61	0.17	0.17	1.22	1.12	0.9982		
		Fe (ICP %)	140	1.62	1.59	0.64	0.66	1.91	1.88	0.9991		
		CEL have sought to twin and triplicate some of the historic and recent drill holes to check exploration. A preliminary analysis of the twin holes indicates similar widths and grades twin holes are: GNDD003 – DDH34 and 04HD08 GNRC110 – DDH53 GNDD144 – GNDD021 – 05HD39 GNRC107 – GNDD008/008A GNDD206 – DDH54 GNDD421 – GNDD424										
points to	 Accuracy and quality of surveys use to locate drill holes (collar and down-hole surveys) trenches mine 	Following completion of drilling, collars are marked and surveyed using a differential GPS (DGPS) relative to a nearby Argentinian SGM survey point. The collars have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s.										
	workings and other locations used Mineral Resource estimation. - Specification of the grid system	entrance to the underg	Following completion of the channel sampling, the location of the channel samples is surveyed from a survey mark at the entrance to the underground workings, located using differential GPS. The locations have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s.									
	used Quality and adequacy of	The drill machine is set	The drill machine is set-up on the drill pad using hand-held survey equipment according to the proposed hole design.									
	topographic control.	compass and inclinome hole using a gyroscope	Diamond core drill holes up to GNDD390 are surveyed down-hole at 30-40m intervals down hole using a down-hole compass and inclinometer tool. RC drill holes and diamond core holes from GNDD391 were continuously surveyed down hole using a gyroscope to avoid magnetic influence from the drill string and rocks. The gyroscope down-hole survey data recorded in the drill hole database at 10m intervals.									
		Ten diamond drill holes have no down hole survey data due to drill hole collapse or blockage of the hole due to loss of drilling equipment. These are GNDD036, 197, 212, 283, 376, 423, 425, 439, 445 and 465. For these holes, a survey of the collar has been used with no assumed deviation to the end of the hole.										
		provide topographic co acquired for the project	All current and previous drill collar sites, Minas corner pegs and strategic surface points have been surveyed using DGPS t provide topographic control for the Project. In addition, AWD3D DTM model with a nominal 2.5 metre precision has been acquired for the project and greater surrounding areas. Drone-based topographic survey data with 0.1 meter precision is being acquired over the project to provide more detail where required.									

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Nominal 80m x 80m, 40m x 80m and 40m x 40m drill spacing is being applied to the drilling to define mineralised areas to Indicated Resource level of confidence, where appropriate. Drilling has been completed to check previous exploration, extend mineralisation along strike, and provide some information to establish controls on mineralization and exploration potential. Samples have not been composited.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias this should be assessed and reported if material. 	As far as is currently understood and where practicable, the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation. Some exploration holes have drilled at a low angle to mineralisation and have been followed up with drill holes in the opposite direction to define mineralised domains. For underground channel sampling, the orientation of the sample is determined by the orientation of the workings. Where the sampling is parallel with the strike of the mineralisation, plans showing the location of the sampling relative to the orientation of the mineralisation, weighted average grades and estimates of true thickness are provided to provide a balanced report of the mineralisation that has been sampled. Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted. In exceptional circumstances, where drill access is restricted, drilling may be non-optimally angled across the mineralised zone.
Sample security	 The measures taken to ensure sample security. 	Samples were under constant supervision by site security, senior technical personnel and courier contractors prior to delivery to the preparation laboratories in San Juan and Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

riteria	JORC Code explanation	Commentary					
Aineral tenement Ind land tenure tatus	- Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental settings.	extensions) held un Fourteen additional farmin agreement. defined mineralizat There are no royalti	der an farmin agr Minas and eight Six Cateos and eig ion and surroundi es held over the t	n Minas (equivalent of m eement with Golden Min exploration licences (Cate ght requested mining leasing prospective ground. cenements.	ing SRL (Cer eos) have be ses are direc	ro Sur) and CIA (en transferred t	GPL SRL (Cerr
	- The security of the tenure held at the	Name	Number	Current Owner	Status	Grant Date	Area (ha)
	time of reporting along with any known impediments to obtaining a licence to	Cerro Sur					
	operate in the area.	Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
	operate in the area.	Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Cerro Norte					
		La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Pique de Ortega	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Descrubidora	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Pardo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Sanchez	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Andacollo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

, (D 5) (ıy υje

Name	Number Current Owner		Status	Grant date	Area (ha)	
Cerro Sur						
North of "Pizarro"	195-152-C-1981	Golden Mining	Granted	29/12/1981	2.42	
Mine	195-152-0-1981	S.R.L.	Granteu	29/12/1981	2.42	
Cerro Norte						

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,261.1m shares 10m options . 44.2m perf rights Australian Registered Office

Directors

Level 1 1205 Hay Street West Perth WA 6005

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

-	_	<u> </u>	<u> </u>									
						^	0	7.0	na	CΤ		1.
				U	U	-		٩.			ι.	

Commentary						
South of	545.208-B-94	CIA GPL S.R.L.	Pending	14/02/1994	1.83	
"Andacollo" Mine			Reconsideration		1.05	
South of	545.209-B-94	CIA GPL S.R.L.	Registered	14/02/1994	3.50	
"Sanchez" Mine					5.50	
South of "La	195-152-C-1981	CIA GPL S.R.L.	Granted	29/12/1981	2.42	
Toro" Mine	192-122-C-1901	CIA GPL S.R.L.	Granteu	29/12/1981	2.42	
South of "Pizarro"	545.207-B-94	Golden Mining	Registered	14/02/1994	2.09	
Mine		S.R.L.			2.09	

Requested Mining Leases (Minas Solicitados)

Name	Number	Status	Area (ha)
Elena	1124.328-G-2021	Registered	2,799.24
Juan Cruz	1124.329-G-2021	Granted	933.69
Paula (over "Lo Que Vendra")	1124.454-G-2021	Application	1,460.06
Argelia	1124.486-G-2021	Registered	3,660.50
Ana Maria (over Ak2)	1124.287-G-2021	Registered	5,572.80
Erica (Over "El Peñón")	1124.541-G-2021	Application	6.00
Silvia Beatriz (over "AK3")	1124.572-G-2021	Application	2,290.75
Soldado Poltronieri (over 1124188-20,	1124.108-2022	Application	777.56
545867-R-94 and 545880-O-94)			

Mining Lease Farmin Agreements

Name	Number	Transfrred to CEL	Status	Area (ha)
Marta Alicia	2260-S-58	In Process	Granted	23.54
Marta	339.154-R-92	In Process	Granted	478.50
Solitario 1-5	545.604-C-94	In Process	Application	685.00
Solitario 1-4	545.605-C-94	In Process	Registered	310.83
Solitario 1-1	545.608-C-94	In Process	Application	TBA
Solitario 6-1	545.788-C-94	In Process	Application	TBA
AGU 3	11240114-2014	No	Granted	1,500.00
AGU 5	1124.0343-2014	No	Granted	1,443.58
AGU 6	1124.0623-2017	No	Granted	1,500.00
AGU 7	1124.0622-S-17	No	Granted	1,500.00
Guillermina	1124.045-S-2019	No	Granted	2,921.05
El Petiso	1124.2478-71	No	Granted	18.00
Ayen/Josefina	1124.495-I-20	No	Granted	2059.6

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Criteria

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office

fice Directors

Level 1 1205 Hay Street West Perth WA 6005 Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explana	ition	Commentary								
			Exploration Lice	nce (Cateo) Farmin Agr	eements						
			Name	Number	Transfrr	ed to CEL	Status		Area (h	a)	
			-	295.122-R-1989		In process		Registered Granted		6	
			-	338.441-R-1993	· ·					0	
			-	545.880-0-1994	In proces		Registered		149.99)	
			-	414.998-2005	Yes			iranted	721.90)	
			-	1124.011-I-07	No		G	iranted	2552		
			-	1124.012-I-07	No			gistered	6677		
			-	1124.013-I-07	No			iranted	5818		
			-	1124.074-I-07	No		G	iranted	4484.5	5	
			Exploration Lice	Exploration Licence (Cateo) Held (Direct Award)							
			Name	Number		Transfrred	to CEL	Status	Area (ha)		
			-	1124-248G-20		Yes		Current	933.20		
			-	1124-188-G-20 (2 zo	1124-188-G-20 (2 zones)		Current		327.16		
			-	1124.313-2021		Yes		Current	986.41		
			-	1124.564-G-2021		Yes		Current	1,521.12		
			-	1124.632-G-2022		Yes		Current	4,287.38		
Exploration done by other parties	- Acknowledgment exploration by ot		geological maps resource estima	toric sampling has prod s, reports, trenching dat ates plus property exam s has been completed or	a, undergr inations a	round survey nd detailed s	vs, drill ho studies by	ole results, g	eophysical sur	veys, non-	
			There is at least workings are lik have been com Historic geophy Historic drilling	6 km of underground v ely to be incomplete. Co piled and digitised as ha sical surveys exist but h on or near the Hualilan historical exploration dri	vorkings th ommonly i as sample o ave been s Project (Co	nat pass thro incomplete r data geologic superseded l erro Sur and	ough mine records of cal mappi by survey Cerro No	f the underging adit expo s completed	round geology osures and dril d by CEL.	v and samp I hole resu	
			 1984 – Lixivia SA channel sampling & 16 RC holes (AG1-AG16) totalling 2,040m 1995 - Plata Mining Limited (TSE: PMT) 33 RC holes (Hua- 1 to 33) + 1,500 RC chip samples 1998 – Chilean consulting firm EPROM (on behalf of Plata Mining) systematic underground mapping a 								
			channe	el sampling							
enger Gold Limited 123 591 382 EL	Issued Capital 1,261.1m shares 10m options 44.2m perf rights	Australian Registered Level 1 1205 Hay Street West Perth WA 6005	Kris I Sergi Sonia Fletc Brett	ctors (nauer, MD and CEO o Rotondo, Chairman a Delgado, Executive Director her Quinn, Non-Exec Director Hackett, Non-Exec. Director Althaus, Non-Exec. Director		5380 9235 @challengerex.co	om				

Criteria	JORC Code explanation	Commentary
		 1999 – Compania Mineral El Colorado SA ("CMEC") 59 diamond core holes (DDH-20 to 79) plus 1,700m RC program 2003 – 2005 – La Mancha (TSE Listed) undertook 7,447m of DDH core drilling (HD-01 to HD-48) Detailed resource estimation studies were undertaken by EPROM Ltd. (EPROM) in 1996 and CMEC (1995)
		 Detailed resource estimation studies were undertaken by Erkow Ett. (Erkow) in 1990 and CWEC (199 revised 2000) both of which are well documented and La Mancha 2003 and 2006. The collection of all exploration data by the various operators was of a high standard and appropriate sampling techniques intervals and custody procedures were used. Not all the historic data has been archived and so there are gaps in the availability of the historic data.
Geology - Deposit type geological setting and style of mineralisation.		Mineralisation occurs in all rock types where it preferentially replaces limestone, shale and sandstone and occur in fault zones and in fracture networks within dacitic intrusions.
	The mineralisation is Zn-(Pb-Cu-Ag) distal skarn (or manto-style skarn) overprinted with vein-hosted mesothermal to epithermal Au-Ag mineralisation. It has been divided into three phases – prograde skarn, retrograde skarn and a later quartz-rich mineralisation consistent with the evolution of a large hydrothermal system. Precise mineral paragenesis and hydrothermal evolution is the subject of on-going work which is being used for exploration and detailed geometallurgical test work.	
		Gold occurs in native form as inclusions with sulphide (predominantly pyrite) and in pyroxene. The mineralisation commonly contains pyrite, chalcopyrite sphalerite and galena with rare arsenopyrite, pyrrhotite and magnetite.
		Mineralisation is either parallel to bedding in bedding-parallel faults, in veins or breccia matrix within fractured dacitic intrusions, at lithology contacts or in east-west striking steeply dipping siliceous faults that cross the bedding at a high angle. The faults have thicknesses of 1–4 metres and contain abundant sulphides. The intersection between the bedding-parallel mineralisation and east-striking cross veins seems to be important in localising the mineralisation.
		Complete oxidation of the surface rock due to weathering is thin. A partial oxidation / fracture oxidation layer near surface is 1 to 40m thick and has been modelled from drill hole intersections.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	Significant intersections previous reported for historic drill holes, DD drill holes, RC drill holes completed by CEL are detailed in CEL ASX releases: 1 June 2022 (Maiden MRE): <u>https://announcements.asx.com.au/asxpdf/20220601/pdf/459jfk8g7x2mty.pdf</u> and 29 March 2023 (MRE update): <u>https://announcements.asx.com.au/asxpdf/20230329/pdf/45n49jlm02grm1.pdf</u>
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of 	A cut-off grade of 1 g/t Au equivalent has been used with up to 2m of internal diltion or a cut-off grade of 0.2 g/ Au equivalent and up to 4m of internal diltion has been allowed. No metallurcial or recovery factors have been used in the intersections reported.
enger Gold Limited 123 591 382 EEL	Issued CapitalAustralian Register1,261.1m sharesLevel 110m options1205 Hay Street44.2m perf rightsWest Perth WA 6005	Kris Knauer, MD and CEOT: +61 8 6380 9235Sergio Rotondo, ChairmanE: admin@challengerex.com

Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Com	imentary
	 the drill hole collar dip and azimuth of the hole down hole length and interception hole length. If the exclusion of this information justified on the basis that the information is not Material and this exclusion d not detract from the understanding the report the Competent Person succearly explain why this is the case. 	is mation loes g of hould	
Data aggregation methods	 In reporting Exploration Results we averaging techniques maximum ar minimum grade truncations (eg cu grades) and cut-off grades are usua and should be stated. 	eighting nd/or tting of high	Weighted average significant intercepts are reported to a gold grade equivalent (AuEq). Results are reported to cut-off grade of a 1.0 g/t Au equivalent and 10 g/t Au equivalent allowing for up to 2m of internal dilution between samples above the cut-off grade and 0.2 g/t Au equivalent allowing up to 10m internal dilution between samples above the cut-off grade. The following metals and metal prices have been used to report gold grade equivalent (AuEq): Au US\$ 1780 / oz Ag US\$24 /oz and Zn US\$ 2800 /t.
	 Where aggregate intercepts incorplengths of high-grade results and lengths of low-grade results the profor such aggregation should be sta some typical examples of such aggregation should be shown in detail. The assumptions used for any repometal equivalent values should be stated. 	onger ocedure used ited and iregations orting of	Metallurgical recoveries for Au, Ag and Zn have been estimated from the results of interim metallurgical test work completed by SGS Metallurgical Operations in Lakefield, Ontario using a combination of gravity and flotation of a combined metallurgical sample from 5 drill holes. Using data from the interim test results, and for the purposes of the AuEq calculation for drill hole significant intercepts, gold recovery is estimated For the AuEq calculation average metallurgical recovery estimated to be 94.9% for gold, 90.9% for silver, 67.0% for Zn and 57.8% for Pb. Metal prices used to report AuEq are Au US\$ 1900 / oz, Ag US\$24 /oz, Zn US\$ 4,000 /t and Pb US 2,000/t Accordingly, the formula used for Au Equivalent is: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1900) x (0.909/0.949)] + [Zn (%) x (40.00*31.1/1900) x (0.670/0.949)] + (Pb (%) x 20.00*31.1/1900) x (0.578/.949) Metallurgical test work and geological and petrographic descriptions suggest all the elements included in the metal equivalents calculation have reasonable potential of eventual economic recovery. While Cu ar Pb are reported in the table above as they were not yet considered economically significant at the time of the interim metallurgical test results, these metals were not used in the Au equivalent calculation at this early stage of the Project. No top cuts have been applied to the reported grades.
between important in the reporting of Exploration in		oration insuf the e	mineralisation is moderately or steeply dipping and strikes NNE and ENE. For some drill holes, there is fficient information to confidently establish the true width of the mineralized intersections at this stage of exploration program.
	 If the geometry of the mineralisation respect to the drill hole angle is known 	Арра	arent widths may be thicker in the case where the dip of the mineralisation changes and/or bedding-paralle
enger Gold Limited 123 591 382 CEL	Issued CapitalAustralian1,261.1m sharesLevel 110m options1205 Hay S44.2m perf rightsWest Perth		e Directors Contact Kris Knauer, MD and CEO T: +61 8 6380 9235 Sergio Rotondo, Chairman E: admin@challengerex.com Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary
widths and	nature should be reported.	mineralisation intersects NW or ENE-striking cross faults and veins.
intercept lengths	 If it is not known and only the down hole lengths are reported there should be a clear statement to this effect (eg 'down hole length true width not known'). 	Representative cross section interpretations have been provided periodically with releases of significant intersections to allow estimation of true widths from individual drill intercepts.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Representative maps and sections are provided in the body of reports released to the ASX.
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All available final data have been reported where possible.
Other substantive exploration data	 Other exploration data if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density groundwater geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are used to estimate densities in Resource Estimates. Eight Induced Polarisation (IP) lines have been completed in the northern areas of the Project. Stage 1 surveying was done on 1 kilometre length lines oriented 115° azimuth, spaced 100m apart with a 50m dipole. The initial results indicate possible extension of the mineralisation with depth. Stage 2 surveying was done across the entire field on $1 - 3$ kilometre length lines oriented 090°, spaced 400m apart with a 50m dipole. On-going data interpretation is being done as drilling proceeds. Three ground magnetic surveys and a drone magnetic survey have been completed. The results of these data and subsequent geological interpretations are being used to guide future exploration. Metallurgical test results are used to estimate the AuEq (gold equivalent) as detailed above in <i>Data Aggregatic</i> and below in <i>Section 3: Metallurgical Factors or Assumptions</i> . The formula used for AuEq is: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1900) x (0.909/0.949)] + [Zn (%) x (40.00*31.1/1900) x (0.670/0.949)] + (Pb (%) x 20.00*31.1/1900) x (0.578/.9490). Point resistivity surveys have been completed east of the Project for the purposes of detecting the presence of groundwater. Three surveys (total of 22 points) have been completed. A water bore has been drilled approximately 4 kilometres to the east of the Project which found water in permeable Quaternary sedimentary deposits above hard-rock basement at 128 metres vertical depth. Testing and commissioning of the bore has y to be completed. Further geophysical test work is planned to determine the extent of the aquifer.

ACN 123 591 382 ASX: CEL

1,261.1m shares 10m options . 44.2m perf rights

1205 Hay Street West Perth WA 6005

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions including the main geological interpretations and future drilling areas provided this information is not commercially sensitive. 	 CEL Plans to undertake the following over the next 12 months Additional resource extension, infill and exploration drilling; Geophysical tests for undercover areas. Structural interpretation and alteration mapping using high resolution satellite data and geophysics to better target extensions of known mineralisation. Field mapping program targeting extensions of known mineralisation. Further metallurgical test work.

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription keying errors between its initial collection an its use for Mineral Resource estimation purposes. Data validation procedures used. 	
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	before COVID-19 closed international travel. Post COVID numerous site visits have undertaken since November 2021. The performance of the drilling program, collection of data, sampling procedures, sample submission and
Geological interpretation	 Confidence in (or conversely the uncertainty of the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect if any of alternative interpretation on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	access to mineralisation at surface and underground exposures. Given the data, geological studies past and completed by CEL, the Competent Person has a high level of confidence in the geological model that has been u to constrain the mineralised domains. It is assumed that networks of fractures controlled by local geological factors have focussed hydrothermal fluids and been the site of mineralisation in both the prograde zinc skarn ar retrograde mesothermal – epithermal stages of hydrothermal evolution. The interpretation captures the essential geometry of the mineralised structure and lithologies with drill data supporting the findings from the initial underground sampling activities. Mineralised domains have been built using explicit wireframe techniques from 0.2 – 0.5 g/t AuEq mineralised intersections, joined between holes by the set of the
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surfa to the upper and lower limits of the Mineral 	
nger Gold Limited 23 591 382 EL	Issued CapitalAustralian Registered1,261.1m sharesLevel 110m options1205 Hay Street44.2m perf rightsWest Perth WA 6005	Directors Contact Kris Knauer, MD and CEO T: +61 8 6380 9235 Sergio Rotondo, Chairman E: admin@challengerex.com Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brei Albaura, Non-Exec, Director Director

Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary					
	Resource.						
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation 	Estimation was made for Au Ag, Zn and Pb being the elements of economic interest. Estimate was also made for Fe and S being the elements that for pyrite which is of economic and metallurgical interest and is also used to estimate the density for bocks in the Mineral Resource Estimate.					
	parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include	No previous JORC Resource estimates or non-JORC For compare to the current Resource estimate. No produce	-				thods
	a description of computer software and parameters used. - The availability of check estimates previous	A 2m composite length was selected after reviewing the average length of 1.54m for samples taken within the results are as a second sec	-		rom the drillir	ng which sho	owed
	 estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other 	 A statistical analysis was undertaken on the sample composites top cuts for Au, Ag, Zn and Pb composites or domain-by-domain basis. The domains were then grouped by host rock and mineralisation style and group top cuts were applied in order to reduce the influence of extreme values on the resource estimates without downgrading the high-grade composites too severely. The top-cut values were chosen by assessing the high distribution of the grade population within each group and selecting the value above which the distribution 					o dom ut sh-end n
	non-grade variables of economic significance (eg sulphur for acid mine drainage	No top cut was applied to estimation of Fe and S.			7 (0/)	D L (0/)	7
	characterisation). In the case of block model interpolation the block size in relation to the average sample 	Group Fault Zone hosted (Magnata and Sanchez) and CAL (limestone) hosted	Au (ppm) 80	Ag (ppm) 300	Zn (%) 20	Pb (%) 5	
	spacing and the search employed.	LUT (siltstone) hosted	20	100	5	1	1
	- Any assumptions behind modelling of selective	DAC (intrusive) hosted	15	70	5	1.8	
	mining units. Any assumptions about correlation between variables. 	Block modelling was undertaken in Surpac™ V6.6 softv	vare.				
	- Description of how the geological interpretation was used to control the resource estimates.	A block model was set up with a parent cell size of 10m (E) x 5.0m (N) x 2.5m (RL) to maintain the resolution of dimensions were chosen to reflect drill hole spacing an shorter 10m X dimension was used to reflect the geom	the minerali d to provide	sed domains. definition for	The 20m Y an potential min	d vertical blc e planning. T	ock
	 Discussion of basis for using or not using grade cutting or capping. 	wireframes.	icti y and one				
	- The process of validation the checking process used the comparison of model data to drill hole	Group Variography was carried out using Leapfrog Edg the 31 domains for each variable.	e software or	n the two met	re composite	d data from e	each

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation		Commentary
			All relevant variables; Au, Ag, Pb, Zn, Fe and S in each domain were estimated using Ordinary Kriging using only data from within that domain. The orientation of the search ellipse and variogram model was controlled using surfaces designed to reflect the local orientation of the mineralized structures.
			An oriented "ellipsoid" search for each domain was used to select data for interpolation. A 3 pass estimation search was conducted, with expanding search ellipsoid dimensions and decreasing minimum number of samples with each successive pass. First passes were conducted with ellipsoid radii corresponding to 40% of the complete range of variogram structures for the variable being estimated. Pass 2 was conducted with 60% of the complete range of variogram structures for the variable being estimated. Pass 3 was conducted with dimensions corresponding to 200% of the semi-variogram model ranges. Blocks within the model where Au was not estimated during the first 3 passes were assigned as unclassified. Blocks for Ag, Pb, Zn, Fe and S that were not estimated were assigned the average values on a per-domain basis.
			Validation checks included statistical comparison between drill sample grades and Ordinary Kriging block estimate results for each domain. Visual validation of grade trends for each element along the drill sections was also completed in addition to swath plots comparing drill sample grades and model grades for northings, eastings and elevation. These checks show good correlation between estimated block grades and drill sample grades.
Moisture	 Whether the tonnages are estabasis or with natural moistur of determination of the mois 	re and the method	Tonnage is estimated on a dry basis.
Cut-off parameters	- The basis of the adopted cut quality parameters applied.	-off grade(s) or	The following metals and metal prices have been used to report gold grade equivalent (AuEq): Au US\$ 1900 / oz, Ag US\$24 /oz, Zn US\$ 4,000 /t and Pb US 2,000/t. Average metallurgical recoveries for Au, Ag, Zn and Pb have been estimated from the results of Stage 1 metallurgical test work completed by SGS Metallurgical Operations in Lakefield, Ontario using a combination of gravity and flotation combined metallurgical samples as detailed in the Criteria below. For the AuEq calculation average metallurgical recovery is estimated as 94.9% for gold, 90.9% for silver, 67.0% for Zn and 57.8% for Pb. Accordingly, the formula used for Au Equivalent is: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1900) x (0.909/0.949)] + [Zn (%) x (40.00*31.1/1900) x (0.670/0.949)] + (Pb (%) x 20.00*31.1/1900) x (0.578/.9490}.
			Based on the break-even grade for an optimised pit shell for gold equivalent, a AuEq cut-off grade of 0.30 ppm is used to report the resource within an optimised pit shell run at a gold price of US\$1,800 per ounce and allowing fo Ag, Zn and Pb credits. Under this scenario, blocks with a grade above the 0.30 g/t Au Eq cut off are considered to have reasonable prospects of mining by open pit methods. A AuEq cut-off grade of 1.0 ppm was used to report the resource beneath the optimised pit shell run as these blocks are considered to have reasonable prospects of future mining by underground methods.
enger Gold Limited 123 591 382 CEL	1,261.1m sharesLev10m options120	stralian Registered Office /el 1 55 Hay Street /sst Perth WA 6005	DirectorsContactKris Knauer, MD and CEOT: +61 8 6380 9235Sergio Rotondo, ChairmanE: admin@challengerex.comSonia Delgado, Executive DirectorFletcher Quinn, Non-Exec DirectorBrett Hackett, Non-Exec. DirectorBirett Hackett, Non-Exec. Director

Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary
Mining factors or assumptions	- Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made.	 The Resource estimate has assumed that near surface mineralisation would be amenable to open pit mining give that the mineralisation is exposed at surface and under relatively thin unconsolidated cover. A surface mine optimiser has been used to determine the proportion of the Resource estimate model that would be amenable to eventual economic extraction by open pit mining methods. The surface mine optimiser was bult using the following parameters with prices in USD: Au price of \$1,800 per oz, Ag price of \$23.4 per oz, Zn price of \$3,825 per tonne and Pb price of \$1,980 per tonne Average metallurgical recoveries of 94.9% for Au, 90.9 % for Ag and 67 % for Zn and 57.8 % for Pb. Ore and waste mining cost of \$2.00 per tonne Unconsolidated cover removal cost of \$0.10 per tonne Processing cost of \$10.00 per tonne Transport and marketing of \$50 / oz of AuEq (road to Jan Juan then rail to Rosario Port) Royalty of \$60 per oz Au, 3% for Ag, Zn and Pb. Assumed concentrate payability of 94.1% for Au, 82.9% for Ag, 90 % for Zn and 95 % for Pb. 45° pit slopes on the western side of the pit and 55° on the eastern side of the pit Blocks above a 0.30 g/t AuEq within the optimised open pit shell are determined to have reasonable prospects of future economic extraction by open pit mining and are included in the Resource estimate on that basis.
Metallurgical factors or assumptions	- The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made.	 economic extraction by underground mining methods and are included in the Resource estimate on that basis. CEL has completed Stage 1 metallurgical test work on representative composite sample of mineralisation from: Two separate composite samples of limestone-hosted massive sulphide (manto) Sample A has a weighted average grade of 10.4 g/t Au, 31.7 g/t Ag, 3.2 % Zn and 0.46 % Pb. Sample B has a weighted average grade 9.7 g/t Au, 41.6 g/t Ag, 4.0% Zn and 0.48% Pb. One dacite (intrusive) composite sample with a weighted average grade of 1.1 g/t Au, 8.1 g/t Ag and 0.10 Zn and 0.04% Pb. One sediment hosted (fine grained sandstone and siltstone) composite sample with a weighted average grade of 0.68 g/t Au, 7.5 g/t Ag, 0.34 % Zn and 0.06 % Pb. One oxidised limestone (manto oxide) composite sample with a weighted average grade of 7.0 g/t Au, 4! g/t Ag, 3.7% Zn and 0.77% Pb. Gravity recovery and sequential flotation tests of the higher-grade limestone hosted mineralisation involved 1. primary P80 = 51 micron primary grind, gravity recovery, Pb-Cu followed by Zn rougher flotation,

ACN 123 591 382 ASX: CEL

www.challengergold.com

10m options

. 44.2m perf rights

1205 Hay Street West Perth WA 6005

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

E: admin@challengerex.com

Criteria	JORC Code explanation	1 C	ommentary
			 4. p80 = 29 micron regrind of the Zn rougher concentrate, 5. two re-cleaning stages of the Pb/Cu rougher concentrate, 6. four re-cleaning Sages on the Zn rougher concentrate, and 7. additional gravity recovery stages added to the Zn Rougher concentrate This results in the following products that are likely to be saleable - Au-Ag concentrate (118 g/t Au, 286 g/t Ag) with low deleterious elements, - Pb concentrate (65% Pb, 178 g/t Au, 765 g/t Ag) with low deleterious elements, and - Zn concentrate (51% Zn, 10 g/t Au, 178 g/t Ag) with low deleterious elements, relatively high Cd, but at a level that is unlikely to attract penalties. - tailing grades of 2 to 3 g/t Au which respond to intensive cyanide leach with recoveries of 70-80% of any
			residual gold and silver to a gold doré bar. Two intensive leach tests of Au-Ag concentrate to doré have been completed using a representative sample the Au-Ag concentrate. One split of the sample was finely ground to p80 of 16.7 μm and the second split finely ground to p80 of 40 μm. The 16.7 μm sample returned a recovery of 96.0% Au and the 40 μm sample returned a recovery of 92.8% Au. These results provide an option to eliminate concentrate transport costs a increase payability for the Au-Ag concentrate.
			 Gravity recovery and flotation tests of the intrusive-hosted mineralisation involved; 1. primary P80 = 120-80 micron primary grind, 2. gravity recovery, 3. single stage rougher sulphide flotation, 4. P80 = 20-30 micron regrind of the rougher concentrate (5-10% mass), 5. one or two re-cleaning stages of the Au-Ag Rougher concentrate At primary grind of p80 = 76 micron and regrind of p80 = 51 micron an Au-Ag concentrate can be produced grading 54 g/t Au and 284 g/t Ag with total recoveries of 97% (Au) and 85% (Ag).
			One test of a sediment hosted composite sample (5-10% of the mineralisation at the Project) was a repeat of the testing done on the intrusive-hosted mineralisation. This produced an Au-Ag concentrate grading 23.6 g Au and 234 g/t Ag at total recoveries of 85% (Au) and 87% (Ag). Further test work is likely to be done as part of more detailed studies. It is likely that the concentrate produced from the sediment-hosted mineralisation will be combined with the Au-Ag concentrate from the limestone and intrusive-hosted mineralisation.
			Applying recoveries of 70% for both gold and silver to the various concentrate tailings components where leaching is likely to be undertaken during production generates recoveries of: • 95% (Au), 93% (Ag), 89% (Zn), 70% (Pb) from the high-grade skarn (manto) component of the mineralisation
enger Gold Limited 123 591 382 CEL	Issued Capital 1,261.1m shares 10m options 44.2m perf rights	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Directors Contact Kris Knauer, MD and CEO T: +61 8 6380 9235 Sergio Rotondo, Chairman E: admin@challengerex.com Sonia Delgado, Executive Director E: admin@challengerex.com Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec Director Brett Hackett, Non-Exec Director E: admin@challengerex.com

Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanatio	n	Commentary	
				m the intrusion-hosted component of the mineralisation; m the sediment-hosted component of the mineralisation;
			of 78% (Au) and 64% (Ag) wh the mineralisation comprises	est of oxide (limestone and dacite hosted mineralisation has produced recoveries hich is expected to be recovered into gold doré bar. While the oxide component of s only a small percentage of the Hualilan mineralisation its lies in the top 30-40 early in the case of an open pit operation.
			geological model, it is expect - 94.9% Au, - 90.9% for Ag - 67.0% for Zn and - 57.8% for Pb	ate and the proportions of the various mineralisation types in the current ted that overall average recoveries for potentially saleable metals will be: ed, these assumptions will be updated.
			grade mineralisation, commi ongoing and planned.	olving column testing of low-grade material, improved recovery of Zn in lower- inution and variability testing, blended test work, and pilot plant testing is
Environmental factors or assumptions	and process residue a always necessary as determining reasona economic extraction environmental impac processing operation determination of pot impacts particularly may not always be w early consideration of environmental impac Where these aspects	cts should be reported. have not been considered red with an explanation of		significant environmental factors which would prevent the eventual extraction ental surveys and assessments have been completed in the past and will form a ies.
Bulk density		r determined. If assumed	CEL has collected specific gravity	(SG) measurements from drill core, which have been used to estimate block
-	the basis for the assu	umptions. If determined	densities for the Resource estima	te
lenger Gold Limited 123 591 382 CEL	Issued Capital 1,261.1m shares 10m options 44.2m perf rights	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director	Contact T: +61 8 6380 9235 E: admin@challengerex.com

Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary
	 the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	Within the mineralised domains there are 956 SG measurements made on drill core samples of 0.1 – 0.2 metres length. Measurements we determined on a dry basis by measuring the difference in sample weight in water and weight in air. For porous samples, the weight in water was measured after wrapping the sample so that no water enters the void space during weighing. In oxidised and partially oxidised rocks, SG clusters around an average of 2.49 g/cc (2,490 kg/m3) which is independent of depth. A density of 2,490 kg/m3 has been used for oxidised, fracture oxidised and partially oxidised blocks.
		Hualilan SG Regression - Oxide / Partial Oxide (n = 16) Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression - Oxide / Partial Oxide variation with depth Hualilan SG Regression -
		In fresh rock samples, a regression model for block density determination has been made by plotting assay interval Fe (%) + S (%) from the interval where the SG measurement was made against the SG measurement. Fe and S are the two elements that form pyrite which is the mineral that is commonly associated with gold and base metal mineralisation at Hualilan. SG plotted against (Fe+S) follows a linear trend within the mineralised domains for oxide and fresh rock as shown below.

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary
Criteria	- The basis for the classification of the Mineral	Commentary Hualilan SG Regression - Oxide / Partial Oxide (n = 790) $f_{e}^{0} = 0.0261x + 2.5301$ $f_{e}^{0} = 0.7214$ $f_{e}^{0} = 0.72144$ $f_{e}^{0} = 0.72144$ $f_{e}^{0} = 0.72144$ $f_{$
	 Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	reasonable prospects for economic extraction, the classification level is based upon semi-qualitative assessment the geological understanding of the deposit, geological and mineralisation continuity, drill hole spacing, QC ressearch and interpolation parameters, analysis of available density information and possible mining methods. The estimation search strategy was undertaken in three separate passes with different search distances, and the minimum number of samples used to estimate a block which were then used as a guide for the classification of resource into Indicated, Inferred and Unclassified. The classification was then further modified to restrict the Indicated Resource to the domains with closer spaced drilling. The potential open pit resource was constrained within an optimised pit shell run using a gold price of US\$1,80 per ounce. Resources reported inside the pit shell were reported above a AuEq cut-off grade of 0.3 g/t and Resources outside the pit shell were reported above a AuEq cut-off grade of 0.3 g/t and Resources outside the pit shell were reported above a AuEq cot of I.0 g/t. Scoping study results have indicated that underground mining and open pit mining are both possible allowing for classification of Indicate and Inferred Mineral Resources throughout the estimation. The Competent Person has reviewed the result and determined that these classifications are appropriate given confidence in the geology, data, results from drilling and possible mining methods as detailed in the scoping stu- stude of the scoping stu-

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence with production data where available. 	 There is sufficient confidence in the data quality drilling methods and analytical results that they can be relied upon. The available geology and assay data correlate well. The approach and procedure is deemed appropriate given the confidence limits. The main factors which could affect relative accuracy are: domain boundary assumptions orientation grade continuity top cut. Grade continuity is variable in nature in this style of deposit and has not been demonstrated to date and closer spaced drilling is required to improve the understanding of the grade continuity in both strike and dip directions. It is noted that the results from the twinning of three holes by La Mancha are encouraging in terms of grade repeatability. The deposit contains very high grades and there is need for the use of top cuts. No production data is available for comparison.

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

JORC Code, 2012 Edition – Table 1 Report Template

Section 1: Sampling Techniques and Data -El Guayabo Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 El Guayabo: CEL Drilling: CEL have drilled HQ diamond core which is sampled by cutting the core longitudinal into two halves. One half is retained for future reference and the other half is sent for sampling. Sampling is done according to the geology. Sample lengths range from 0.5 to 2.5 metres. The average sample length is 1.5m. Samples are prepared at SGS Laboratories in Guayaquil for 30g fire assay and 4-acid digest ICPW and then assayed in SGS Lima. The sample size is considered representative for the geology and style of mineralisation intersected. All the cor All collected material is sampled for assay. Historic Drilling: Newmont Mining Corp (NYSE: NEM) ("Newmont") and Odin Mining and Exploration Ltd (TSX: ODN) ("Odin") core drilled the property between February 1995 and November 1996 across two drilling campaigns. The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy. Duplicates were prepared by the Laboratory (Bonder Cleg) which used internal standards. Newmont also inserted its own standards at 25 sample intervals as a control on analytical quality Diamond drilling produced core that was sawed in half with one half sent to the laboratory for assaying per industry standards at 25 sample intervals as a control on analytical quality Cu assays above 2% were not re-assayed using a technique calibrated to higher value Cu results hence the maximum reported assay for copper is 2%. All core samples were analysed using a standard fire assay
enger Gold Limited 23 591 382 EL	Issued Capital Australian Registered 1,261.1m shares Level 1 10m options 1205 Hay Street	

Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary
		 totaling 1,094.29m were collected. Sampling was done for Au analysis by fire assay of a 30g charge and 43 element 4-acid digest with ICP_AES determination. Field mapping (creek traverse) by CEL includes collection of rock chip samples for assay for Au by fire assay (50g) with AAS determination and gravimetric determination for values > 10 g/t Au and assay for 48 elements by 4-acid digest with ICP-MS determination. Rock chip samples are taken so as to be as representative as possible of the exposure being mapped. Colorado V: Soil sampling: A database of 4,495 soil analyses has been provided by Goldking Mining Company S.A. (GK) has been fully evaluated. No information has been provided on the method of sample collection or assay technique. The soil analyses include replicate samples and second split analyses. Pulps have been securely retained by Goldking Mining Company and have been made available to CEL for check assaying. Check assaying is planned, including collection of field duplicates. Rock chip sampling during regional mapping has been done on selected exposure. Sampling involves taking 2-3 kg of rock using a hammer from surface exposures that is representative of the exposure. Selected intervals of drill core have been cut longitudinally and half core were submitted for gold determination at GK's on-site laboratory prior to CEL's involvement with the Project. Re-sampling of the core by CEL involves taking X-ore (where the core has previously been sampled) or ½ core (where the core has not previously been sampled). The core is cut longitudinally and sample intervals of 1 - 3 meters have been collected for analysis. ZKO-1 and ZK-1 and ZK-1 analyse for gold by fire assay (30g) with ICP determination and other elements by 4-acid digest with ICP-MS finish (36 elements) at SGS del Peru S.A.C. SAZKO-1, SAZKO-2, SAZK2-1, ZK3-1, ZK3-1, ZK2-1, ZK3-1, ZK2-1, ZK3-1, ZK3-1,

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary
Drilling techniques	 Drill type (eg core, reverse circulation hole hammer, rotary air blast, auge sonic, etc) and details (eg core dian or standard tube, depth of diamond face-sampling bit or other type, wh is oriented and if so, by what method 	Bangka, CEL Drilling: ter, triple • Diamond core drilling collecting HQ core (standard tube). The core is not oriented. ails, Historic Drilling: her core • Diamond core drilling HQ size from surface and reducing to NQ size as necessary. The historical records do not
Drill sample recovery	 Method of recording and assessing chip sample recoveries and results of Measures taken to maximise sample and ensure representative nature of samples. Whether a relationship exists betwo recovery and grade and whether so may have occurred due to preferen loss/gain of fine/coarse material. 	sessed. CEL Drilling: recovery Core run lengths recovered are recorded against the drillers depth markers to determine core recovery. Core sample recovery is high using standard HQ and NQ drilling No relationship between sample recovery and grade has been observed. Historic Drilling: In a majority of cases core recovery was 100%. In the historical drill logs where core recoveries were less than 100% the percentage core recovery was noted. No documentation on the methods to maximise sample recovery was reported in historical reports however inspection of the available core and historical drilling logs indicate that core recoveries were generally 100% with the exception of the top few metres of each drill hole. No material bias has presently been recognised in core. Observation of the core from various drill holes indicate that the rock is generally fairly solid even where it has been subjected to intense, pervasive hydrothermal alteration and core recoveries are generally 100%. Consequently, it is expected that the samples obtained were not unduly biased by significant core losses either during the drilling or cutting processes
		 Colorado V: Core from Goldking has been re-boxed prior to sampling where boxes have deteriorated, otherwise the original
		 Core from Goldking has been recover phone to sampling where boxes have deteriorated, otherwise the original boxes have been retained. Core lengths have been measured and compared to the depth tags that are kept in the boxes from the drilling and recovered lengths have been recorded with the logging. Where re-boxing of the core is required, core has been placed in the new boxes, row-by row with care taken to ensure all of the core has been transferred. No relationship has been observed between core recovery and sample assay values.
Logging	- Whether core and chip samples have	
	geologically and geotechnically log	
enger Gold Limited 123 591 382 TEL	1,261.1m shares Level 10m options 1205 H	an Registered Office Directors Contact Kris Knauer, MD and CEO T: +61 8 6380 9235 r Street Sergio Rotondo, Chairman E: admin@challengerex.com th WA 6005 Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Fini Althaus, Non-Exec. Director

Criteria JORC Code explanation

Commentary

- level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
- Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.
- The total length and percentage of the relevant intersections logged.

- Peer review of core logging is done to check that the logging is representative.
- 100% of all core including all relevant intersections are logged
- Progress of current and historic El Guayabo and Colorado V drill core re-logging and re-sampling is summarized below:

_

- . .

Historic EL Guayabo Drilling

			Core		Total	
Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples	
GY-01	249.2	Complete	Complete	Partial	25	
GY-02	272.9	Complete	Complete	Partial	88	
GY-03	295.99	Pending	Complete	Pending		
GY-04	172.21	Pending	Complete	Pending		
GY-05	258.27	Partial	Complete	Partial	56	
GY-06	101.94	Pending	Complete	Pending		
GY-07	127.0	Pending	Complete	Pending		
GY-08	312.32	Pending	Complete	Pending		
GY-09	166.25	Pending	Complete	Pending		
GY-10	194.47	missing core	missing core	missing core		
GY-11	241.57	Complete	Complete	Partial	84	
GY-12	255.7	Partial	Complete	Pending		
GY-13	340.86	missing core	missing core	missing core		
GY-14	309.14	missing core	missing core	missing core		
GY-15	251.07	missing core	missing core	missing core		
GY-16	195.73	missing core	missing core	missing core		
GY-17	280.04	Complete	Complete	Partial	36	
GY-18	160.35	Pending	Complete	Pending		
GY-19	175.42	Pending	Complete	Pending		
Logged (m)	1,043.71	Re-logged		Samples Submitted	289	
Total (m)	4,185.01	Odin Drilled				

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1

1205 Hay Street

West Perth WA 6005

ffice Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director

Pini Althaus, Non-Exec. Director

iteria	JORC Code explanation	Commentary					
		JDH-01	236.89	missing core	missing core	missing core	
		JDH-02	257.62	missing core	missing core	missing core	
		JDH-03	260.97	missing core	missing core	missing core	
		JDH-04	219.00	missing core	missing core	missing core	
		JDH-05	210.37	missing core	missing core	missing core	
		JDH-06	302.74	Complete	Complete	Partial	98
		JDH-07	105.79	missing core	missing core	missing core	
		JDH-08	352.74	missing core	missing core	missing core	
		JDH-09	256.70	Complete	Complete	Partial	49
		JDH-10	221.64	Complete	Complete	Partial	43
		JDH-11	217.99	Pending	Complete	Pending	
		JDH-12	124.08	Complete	Complete	Partial	22
		JDH-13	239.33	Complete	Complete	Partial	21
		JDH-14	239.32	Complete	Complete	Partial	30
		Logged (m)	1,038.09	Re-logged		Samples Submitted	263
		Total (m)	3,245.18	Newmont Drill	ed		

				Core		Total
	Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples
GYI	DD-21-001	800.46	Complete	Complete	Complete	581
GYE	DD-21-002	02 291.70 Comple		Complete	Complete	204
GYI	DD-21-002A	002A 650.58 Complet		Complete	Complete	282
GYI	DD-21-003	723.15	Complete	Complete	Complete	545
GYI	DD-21-004	696.11	Complete	Complete	Complete	513
GYI	DD-21-005	632.05	Complete	Complete	Complete	445
GYI	DD-21-006	365.26	Complete	Complete	Complete	258
GYI	DD-21-007	651.80	Complete	Complete	Complete	407
GYI	DD-21-008	283.68	Complete	Complete	Complete	214
Office	Directors		Contact			

T: +61 8 6380 9235

E: admin@challengerex.com

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,261.1m shares 10m options 44.2m perf rights

Level 1

1205 Hay Street

West Perth WA 6005

Australian Registered Office Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director

Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary					
		GYDD-21-009	692.67	Complete	Complete	Complete	517
		GYDD-21-010	888.60	Complete	Complete	Complete	620
		GYDD-21-011	314.46	Complete	Complete	Complete	227
		GYDD-21-012	797.65	Complete	Complete	Complete	588
		GYDD-21-013	517.45	Complete	Complete	Complete	388
		GYDD-22-014	783.60	Complete	Complete	Complete	546
		GYDD-22-015	368.26	Complete	Complete	Complete	265
		GYDD-22-016	469.75	Complete	Complete	Complete	314
		Logged (m)	9,927.23			Samples Submitted	6,915
		Total Drilled (m)	9,927.23				

CEL El Guayabo Drill Hole Processing Completed during Drill Camp #1, Phase # 2 2022-2023

		Core		Total
Depth (m)	Logging Status	Photograph	Sampling Status	Samples
860.75	Complete	Complete	Complete	601
734.05	Complete	Complete	Complete	534
861.05	Complete	Complete	Complete	632
750.00	Complete	Complete	Complete	544
776.40	Complete	Complete	Complete	520
812.85	Complete	Complete	Complete	596
702.85	Complete	Complete	Complete	514
795.55	Complete	Complete	Complete	573
650.00	Complete	Complete	Complete	466
1194.05	Complete	Complete	Complete	881
1082.45	Complete	Complete	Complete	803
875.35	Complete	Complete	Complete	658
521.20	Complete	Complete	Complete	364
528.95	Complete	Complete	Complete	382
691.20	Complete	Complete	Complete	506
	860.75 734.05 861.05 750.00 776.40 812.85 702.85 795.55 650.00 1194.05 1082.45 875.35 521.20 528.95	860.75 Complete 734.05 Complete 861.05 Complete 750.00 Complete 776.40 Complete 812.85 Complete 702.85 Complete 795.55 Complete 1194.05 Complete 875.35 Complete 521.20 Complete 528.95 Complete	Depth (m)Logging StatusPhotograph860.75CompleteComplete734.05CompleteComplete861.05CompleteComplete750.00CompleteComplete776.40CompleteComplete812.85CompleteComplete702.85CompleteComplete795.55CompleteComplete1194.05CompleteComplete1082.45CompleteComplete875.35CompleteComplete521.20CompleteComplete528.95CompleteComplete	Depth (m)Logging StatusPhotographSampling Status860.75CompleteCompleteComplete734.05CompleteCompleteComplete861.05CompleteCompleteComplete861.05CompleteCompleteComplete750.00CompleteCompleteComplete776.40CompleteCompleteComplete812.85CompleteCompleteComplete702.85CompleteCompleteComplete795.55CompleteCompleteComplete1082.45CompleteCompleteComplete875.35CompleteCompleteComplete875.35CompleteCompleteComplete521.20CompleteCompleteComplete528.95CompleteCompleteComplete

.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights

Level 1

Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005
 Directors
 Contact

 Kris Knauer, MD and CEO
 T: +61 8 6380 9235

 Sergio Rotondo, Chairman
 E: admin@challengerex.com

 Sonia Delgado, Executive Director
 Fletcher Quinn, Non-Exec Director

 Prett Hackett, Non-Exec. Director
 Fletcher Quinn, Non-Exec. Director

JORC Code explanation	Commentary					
	GYDD-23-031	696.40	Complete	Complete	Complete	486
	GYDD-23-032	781.45	Complete	Complete	Complete	586
	GYDD-23-033	565.85	Complete	Complete	Complete	387
	GYDD-23-034	413.65	Complete	Complete	Complete	307
	GYDD-23-035	381.85	Complete	Complete	Complete	258
	GYDD-23-036	767.45	Complete	Complete	Complete	573
	GYDD-23-037	823.10	Complete	Complete	Complete	607
	GYDD-23-038	651.80	Complete	Complete	Complete	466
	GYDD-23-039	812.40	Complete	Complete	Complete	598
	GYDD-23-040	352.40	Complete	Complete	Complete	255
	GYDD-23-041	779.00	Complete	Complete	Complete	543
	GYDD-23-042	746.40	Complete	Complete	Complete	528
	GYDD-23-043	742.15	Complete	Complete	Complete	556
	Logged (m)	20,350.60			Samples Submitted	14,724
	Logged (m) Total Drilled (m)	20,350.60 20,350.60			Samples Submitted	14,724
	Total Drilled (m) Colorado V: • Core has k quantitati • Colorado V o	20,350.60 Deen logged for ve. core re-logging	lithology, alteratio and re-sampling is		and structure. Where p	
	Total Drilled (m) Colorado V: • Core has b quantitati	20,350.60 Deen logged for ve. core re-logging			and structure. Where p	
	Total Drilled (m) Colorado V: • Core has k quantitati • Colorado V d	20,350.60 Deen logged for ve. core re-logging		summarized belc	and structure. Where p	oossible, logging
	Total Drilled (m) Colorado V: • Core has b quantitati • Colorado V o Historic Colorado V	20,350.60 been logged for ve. core re-logging Drilling	and re-sampling is	summarized belo Core	and structure. Where p	oossible, logging Total
	Total Drilled (m) Colorado V: Core has b quantitati Colorado V o Historic Colorado V Hole_ID	20,350.60 been logged for ve. core re-logging Drilling Depth (m)	and re-sampling is Logging Status	summarized belc Core Photograph	and structure. Where p w: Sampling Status	oossible, logging Total Samples
	Total Drilled (m) Colorado V: • Core has b quantitati • Colorado V o Historic Colorado V Hole_ID ZK0-1	20,350.60 been logged for ve. core re-logging Drilling Depth (m) 413.6	and re-sampling is Logging Status Complete	summarized belo Core Photograph Complete	and structure. Where p ow: Sampling Status Samples Submitted	oossible, logging Total Samples 281
	Total Drilled (m) Colorado V: • Core has k quantitati • Colorado V o Historic Colorado V <u>Hole_ID</u> ZK0-1 ZK0-2	20,350.60 been logged for ve. core re-logging Drilling Depth (m) 413.6 581.6	and re-sampling is Logging Status Complete Complete	summarized belo Core Photograph Complete Complete	and structure. Where p ow: Sampling Status Samples Submitted Samples Submitted	oossible, logging Total Samples 281 388
	Total Drilled (m) Colorado V: • Core has k quantitati • Colorado V Historic Colorado V Hole_ID ZK0-1 ZK0-2 ZK0-3	20,350.60 been logged for ve. core re-logging Drilling Depth (m) 413.6 581.6 463.0	and re-sampling is Logging Status Complete Complete Complete	summarized belo Core Photograph Complete Complete Complete	and structure. Where p we: Sampling Status Samples Submitted Samples Submitted Samples Submitted	oossible, logging Total Samples 281 388 330
	Total Drilled (m) Colorado V: • Core has b quantitatii • Colorado V o Historic Colorado V <u>Hole_ID</u> ZK0-1 ZK0-2 ZK0-3 ZK0-4	20,350.60 been logged for ve. Drilling Depth (m) 413.6 581.6 463.0 458.0	and re-sampling is Logging Status Complete Complete Complete Complete	summarized belo Core Photograph Complete Complete Complete Complete	and structure. Where p ow: Sampling Status Samples Submitted Samples Submitted Samples Submitted Samples Submitted	Total Samples 281 388 330 350

Issued Capital 1,261.1m shares 10m options 44.2m perf rights

Australian Registered Office

ffice Directors

Level 1 1205 Hay Street West Perth WA 6005 Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Criteria	JORC Code explanatio	n Com	mentary					
			ZK1-3	425.0	Complete	Complete	Samples Submitted	279
			ZK1-4	379.5	Complete	Complete	Samples Submitted	267
			ZK1-5	419.5	Complete	Complete	Samples Submitted	266
			ZK1-6	607.5	Complete	Complete	Samples Submitted	406
			ZK1-7	453.18	Complete	Complete	Samples Submitted	370
			ZK1-8	556.0	Complete	Complete	Not Re-Sampled	
			ZK1-9	220.0	Complete	Complete	Samples Submitted	140
			ZK2-1	395.5	Complete	Complete	Samples Submitted	320
			ZK3-1	372.48	Complete	Complete	Samples Submitted	250
			ZK3-1A	295.52	Pending	Pending	Pending	
			ZK3-2	364.80	Complete	Complete	Samples Submitted	235
			ZK3-4	322.96	Complete	Complete	Samples Submitted	156
			ZK4-1	434.0	Complete	Complete	Not Re-sampled	
			ZK4-2	390.5	Complete	Complete	Not Re-sampled	
			ZK4-3	650.66	Complete	Complete	Not Re-sampled	
			ZK4-4	285.0	Complete	Complete	Not Re-sampled	
			ZK5-1	321.90	Complete	Complete	Not Re-sampled	
			ZK5-2	321.0	Complete	Complete	Not Re-sampled	
			ZK5-3	446.5	Complete	Complete	Not Re-sampled	
			ZK5-4	508.0	Complete	Complete	Not Re-sampled	
			ZK5-5	532.0	Complete	Complete	Samples Submitted	378
			ZK6-1	552.6	Complete	Complete	Not Re-sampled	
			ZK6-2	531	Complete	Complete	Not Re-sampled	
			ZK10-1	454.0	Complete	Complete	Samples Submitted	229
			ZK10-2	318.82	Complete	Complete	Samples Submitted	206
			ZK10-3	331.52	Complete	Complete	Samples Submitted	220
			ZK11-1	237.50	Complete	Complete	Not Re-sampled	
			ZK12-1	531.50	Complete	Complete	Not Re-sampled	
			ZK12-2	510.6	Complete	Complete	Not Re-sampled	
ger Gold Limited 591 382 -	Issued Capital 1,261.1m shares 10m options 44.2m perf rights	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Sergio Rot Sonia Delg	er, MD and CEO ondo, Chairman gado, Executive Director uinn, Non-Exec Director	Contact T: +61 8 6380 9 E: admin@chall			

Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Com	nmentary					
			ZK13-1	394.0	Complete	Complete	Samples Submitted	246
			ZK13-2	194.0	Complete	Complete	Not Re-sampled	
			ZK16-1	324.0	Complete	Complete	Samples Submitted	212
			ZK16-2	385.83	Complete	Complete	Samples Submitted	223
			ZK18-1	410.5	Complete	Complete	Samples Submitted	286
			ZK19-1	548.60	Complete	Complete	Not Re-sampled	
			ZK100-1	415.0	Complete	Complete	Not Re-sampled	
			ZK103-1	524.21	Complete	Complete	Not Re-sampled	
			ZK105-1	404.57	Complete	Complete	Not Re-sampled	
			ZK205-1	347.0	Complete	Complete	Samples Submitted	211
			SAZKO-1A	569.1	Complete	Complete	Samples Submitted	396
			SAZKO-2A	407.5	Complete	Complete	Samples Submitted	260
			SAZK2-1	430.89	Complete	Complete	Samples Submitted	195
			SAZK2-2	354.47	Complete	Complete	Not Re-Sampled	
			CK2-1	121.64	missing core	missing core	missing core	
			CK2-2	171.85	missing core	missing core	missing core	
			CK2-3	116.4	missing core	missing core	missing core	
			CK2-4	146.12	missing core	missing core	missing core	
			CK2-5	357.56	Complete	Complete	Complete	
			CK2-6	392.56	Complete	Complete	Complete	
			CK3-1	185.09	missing core	missing core	missing core	
			CK3-2	21.75	missing core	missing core	missing core	
			CK3-3	138.02	missing core	missing core	missing core	
			CK5-1	273.56	Complete	Complete	Not Re-Sampled	
			CK5-2	273.11	Complete	Complete	Not Re-Sampled	
			CK13-1	227.1	Complete	Complete	Not Re-Sampled	
			CK13-2	231.16	Complete	Complete	Not Re-Sampled	
			CK13-3	197.06	Complete	Complete	Not Re-Sampled	
			CK13-4	176.57	Complete	Complete	Not Re-Sampled	
enger Gold Limited 23 591 382 EL	Issued Capital 1,261.1m shares 10m options 44.2m perf rights	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Sergio Rot Sonia Delg Fletcher Q Brett Hack	r, MD and CEO ondo, Chairman ado, Executive Director uinn, Non-Exec Director ett, Non-Exec. Director				

Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary					
		CK13-5	184.70	Complete	Complete	Not Re-Sampled	
		СК21-1	143.47	Complete	Complete	Not Re-Sampled	
		Logged (m)	25,315.07	Re-logged		Samples Submitted	7,894
		Total (m)	24,414.20	Core Shack			
		Total (m)	26,528.26	Drilled			
		CEL Colorado V Dril	ll Hole Processi	ng Completed durin	ng Drill Camp #1, Core	Phase #1 2022	Total
		Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples
		CVDD-22-001	533.20	Complete	Complete	Complete	398
		CVDD-22-002	575.00	Complete	Complete	Complete	412
		CVDD-22-003	512.40	Complete	Complete	Complete	384
		CVDD-22-004	658.95	Complete	Complete	Complete	478
		CVDD-22-005	607.15	Complete	Complete	Complete	456
		CVDD-22-006	600.70	Complete	Complete	Complete	427
		CVDD-22-007	808.00	Complete	Complete	Complete	602
		CVDD-22-008	535.70	Complete	Complete	Complete	306
		CVDD-22-009	890.80	Complete	Complete	Complete	668
		CVDD-22-010	890.20	Complete	Complete	Complete	645
		CVDD-22-011	672.50	Complete	Complete	Complete	481
		CVDD-22-012	756.70	Complete	Complete	Complete	556
		CVDD-22-013	752.45	Complete	Complete	Complete	467
		CVDD-22-014	863.40	Complete	Complete	Complete	642
		CVDD-22-015	758.35	Complete	Complete	Complete	558
		CVDD-22-016	558.45	Complete	Complete	Complete	380
		CVDD-22-017	746.05	Complete	Complete	Complete	540

Issued Capital 1,261.1m shares 10m options . 44.2m perf rights Australian Registered Office

Logged (m)

Total (m)

Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

11,720.00

11,720.00

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Samples Submitted

8,400

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 El Guayabo: CEL: For sampling, all core is cut using a diamond saw, longitudinally into two halves. One half is sampled for assay and the other retained for future reference. Where duplicate samples are taken, ¼ core is cut using a diamon saw to prepare two ¼ core duplicates. The location of the cut is marked on the core by the geologist that logged the core to ensure the cut creates a representative sample. The sample preparation technique is appropriate for the material being sampled Historic: Core was cut with diamond saw and half core was taken All drilling was core drilling as such this is not relevant Sample preparation was appropriate and of good quality. Each 1-3 m sample of half core was dried, crushed to
enger Gold Limited 123 591 382 CEL	Issued CapitalAustralian Register1,261.1m sharesLevel 110m options1205 Hay Street44.2m perf rightsWest Perth WA 600	red Office Directors Contact Kris Knauer, MD and CEO T: +61 8 6380 9235 Sergio Rotondo, Chairman E: admin@challengerex.com

Pini Althaus, Non-Exec. Director

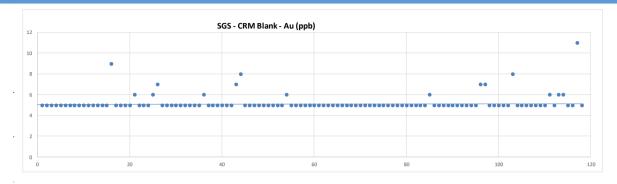
Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 El Guayabo: CEL: Camp #1, Phase#1 All drill core collected by CEL has been crushed to a nominal 2mm size. A 500 g sub-sample has been pulverized to 85% passing 75 micron at the SGS Laboratory in Guayaquil. Sub-samples of the pulps have been analyzed by SGS for Au by Fire Assay (30g) with AAS determination and gravimetric determination where over limit. Sub-samples of the pulps are also assayed for a multi element suite by 4-acid digest with ICPMS determination (including Cu, Mo, Ag, Zn, Pb, S and Fe). All assay techniques are partial assays of the total sample. Samples submitted by CEL include standards (CRM), blanks and duplicate samples to provide some control (QAQC) on the accuracy and precision of the analyses. 6 different CRM pulp samples have been submitted with the core samples. All 6 are certified for Au, 2 are certified for Ag, 5 are certified for Cu, 1 is certified for Fe and 3 are certified for Mo. For Au, of 222 CRM pulp analyses, 215 are within +/- 2 SD (97%) For Ag, of 54 CRM pulp analyses, 125 are within +/- 2 SD (99%) For Cu, of 126 CRM pulp analyses, 125 are within +/- 2 SD (99%) For Fe, of 65 CRM pulp analyses, 63 are within +/- 2 SD (98%) For Fe, of 65 CRM pulp analyses, 63 are within +/- 2 SD (98%) For Fe, of 65 CRM pulp analyses, 63 are within +/- 2 SD (97%) 118 samples of pulp that are known to have a blank Au value have been included with the samples submitted. 16 samples returned Au values of >5 pp (up to 11 ppb) indicating only mild instrument calibration or contamination during fire assay. 337 % core duplicate samples have been submitted. The duplicate analyses for Au, Ag, Cu, Pb, Zn, As and Mo have been analysed. The duplicate samples analyses follow very closely the original analyses providing assurance that the sample size and technique is appropriate.

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary			
		SGI-OMI: As (gent) - max (J- 20) **** <th>Sign - CPM1 - Gr (N) - mum (/-230</th> <th>S/S - Cititi - Ag(ppr) -mass (/ .20) 10 </th> <th>SIG - CIMIL - Min (N) - musi 1/- 250</th>	Sign - CPM1 - Gr (N) - mum (/-230	S/S - Cititi - Ag(ppr) -mass (/ .20) 10	SIG - CIMIL - Min (N) - musi 1/- 250
			SG5-OBMI-GrQ, mass / 250	S25-C1004-Ag (pm)-man (/-2:0	S6-004:Http:://wanif-20
		505-0005-Aviganti-mark (/. 50 50 50 50 50 50 50 50 50 50	505 - CPR6 - Cu (Q - musi i/-250		
			505-0007-Cu (%)-man (/-20 505-0007-Cu (%)-man (/-20)-Cu (/-20)		505-0007-7400-7400-7400-7400-7400-7400-7


Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

JORC Code explanation

Commentary

CEL: Camp #1, Phase#2

- All drill core collected by CEL has been crushed to a nominal 2mm size. A 500 g sub-sample has been pulverized to 85% passing 75 micron at the SGS Laboratory in Guayaguil. Sub-samples of the pulps have been analyzed by SGS for Au by Fire Assay (30g) with AAS determination and gravimetric determination where over limit. Subsamples of the pulps are also assayed for a multi element suite by 4-acid digest with ICPMS determination (including Cu, Mo, Ag, Zn, Pb, S and Fe). All assay techniques are partial assays of the total sample.
- Samples submitted by CEL include standards (CRM), blanks and duplicate samples to provide some control ٠ (QAQC) on the accuracy and precision of the analyses.
- 7 different CRM pulp samples have been submitted with the core samples. All 7 are certified for Au, 3 are certified for Ag, All 7 are certified for Cu, 1 is certified for Fe and 4 are certified for Mo.
- For Au, of 453 CRM pulp analyses, 445 are within +/- 2 SD (98%) •
- For Ag, of 155 CRM pulp analyses, 150 are within +/- 2 SD (97%) .
- For Cu, of 453 CRM pulp analyses, 444 are within +/- 2 SD (98%) ٠
- For Mo, of 286 CRM pulp analyses, 272 are within +/- 2 SD (95%) ٠
- For Fe, of 2 CRM pulp analyses, All are within +/- 2 SD (100%) .
- 228 samples of pulp that are known to have a blank Au value have been included with the samples submitted. 11 samples returned Au values of >5 ppb (up to 9 ppb) indicating only mild instrument calibration or contamination during fire assay.
- 671 ¼ core duplicate samples have been submitted. The duplicate analyses for Au, Ag, Cu, Pb, Zn, As and Mo have been analysed. The duplicate sample analyses follow very closely the original analyses providing assurance that the sample size and technique is appropriate.

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Criteria

Issued Capital 1.261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1

1205 Hay Street

Directors

Pini Althaus, Non-Exec. Director

Kris Knauer, MD and CEO Sergio Rotondo, Chairman West Perth WA 6005 Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

		1	
SGS- ORM1- Au (ppm) - mean 4/-250	565 - CRM1 - Cu(10) - mean #/- 250		SGS- CRM1 - Mo (%) - me an 4/- 2 SD
	24		138
· · · · · · · · · · · · · · ·			
			and the second state of the sta
	2.0		2.27
a 33 40 40 30 30 30	1 36 66 11 100 100		
SGS - CRM2- Au (ppm) - mean +/-2SD	SGS- CRMz - Ga (%) - mean +/- 2SD		SGS- CRM2- Mo(19 -mean 4/-2SD
1.2K	256		
	125		
	121		
10	121		
a 70 a a a 10 10 10	1 23 68 68 18 198 198		1 3 6 6 9 9
SGS- CRM4 - Au (ppm) - mean i/-2SD	SGS- ORM4-Ga (%) - mean 4/-250	SGS - CRM4- Ag (ppm) - me an +/- 2SD	565- 08M4- Mo(19 -mean 4/-25D
	1.0	118	
	10		
	1.0	10	1.91
1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32		8 € 18 18 28 28 30 39 di	
SGS - CRMS - Au (ppm) - mean +/- 2SD	5GS- 00MS- Gz (%)- mean +/-25D	SGS - CRMS - Ag(ppm) - mean +/- 25D	
1.0		**	
1.0			
	14		
1.20 1. 1 1. 1 1. 1 1. 1 1. 1 8 30 28 30 40 48 48 40 70 88 40			
5/05- (201/16 - Au (ppm) - mean +/- 250	565 - CRM6 - Cu (%) - maan +/- 250		
	1.01		
N	1.0		
5 45 10 10 10 10 10 10 10 10 10 10 10 10 10	5 cm 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
SGS- CRM7 - Au (ppm) - mean +/- 25D	565 - CRM7 - Cu (%) - mean +/- 25D		SGS - CRM7- Fe (%) - maan + /- 2SD
	13		
14	871		12 · · · · · · · · · · · · · · · · · · ·
3.8	839 •		
18	871		
a z s š š š 10 10 14 14 15 30			
	565 - CRM8- Cu (K) - main +6-25D	565 - 09569 - 4a (anni) - manu 1/, 260	S.G. (RMR - Mo.M.) - month / 200
505-CRME-Au (spm)- maan +/- 200	565 - CRM8- Cu (%) - mean #/- 25 D	565 - ClVMB- Ag (ppm) - mean +/- 250	5 G5- CRM8 - Mo (%) - maan +/- 25D
565 - CRMB - Au (spm) - mean +/- 200	177	NIB	1.1 52
505 - CRNB - Au (ppm) - man 1 /- 200			
565 - CRMB - Au (spm) - mean +/- 200	177	NIB	1.19
505 - CRNB - Au (ppm) - man 1 /- 200			
505 - CRNB - Au (ppm) - man 1 /- 200			
305 - CNNE Ace (pps) - max 1/- 20 			

Commentary

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Criteria

Issued Capital 1,261.1m shares 10m options . 44.2m perf rights

JORC Code explanation

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Kris Knauer, MD and CEO

Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com ····

.

www.challengergold.com

ACN 123 591 382

ASX: CEL

Criteria

Challenger Gold Limited

Issued Capital 1.261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

completed by in Lima at SGS del in Peru S.A.C and by ALS Laboratories in Quito with analysis completed by ALS in Vancouver, Canada. Samples were crushed and a 500g sub-sample was pulverized to 85% passing 75 µm. The technique provides for a near total analysis of the economic elements of interest. CEL rock chip samples were prepared for assay at ALS Laboratories (Quito) with analysis being completed at ALS

٠ Laboratories (Peru). The fire assay and 4-acid digest provide for near-total analysis of the economic elements of interest. No standards or blanks were submitted with the rock chip samples.

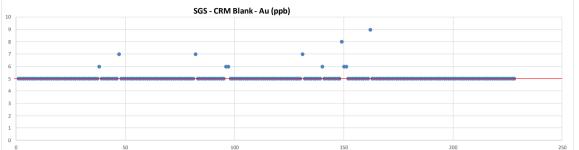
Historic:

•

•

- The nature, guality and appropriateness of the assaying and laboratory procedures used by Newmont and Odin • are still in line with industry best practice with appropriate QA/QC and chain of custody and are considered appropriate.
- Available historical data does not mention details of geophysical tools as such it is believed a geophysical •

assaying program of the majority of the higher-grade sections which confirmed the repeatability.


Given the above, it is considered acceptable levels of accuracy and precision have been established CEL ¼ and ½ core samples were prepared for assay at SGS Del Ecuador S.A.in Quito, Ecuador with analysis

- campaign was not completed in parallel with the drilling campaign.
- Duplicates were prepared by the Laboratory (Bonder Cleg) which used internal standards. Newmont also •
- inserted its own standards at 25 sample intervals as a control on analytical quality. Later Odin undertook a re-

10 8

Commentary

JORC Code explanation

Criteria	JORC Code explanation	Commentary
		 Colorado V: CEL: Camp #1, Phase#1 All drill core collected by CEL has been crushed to a nominal 2mm size. A 500 g sub-sample has been pulverized to 85% passing 75 micron at the SGS Laboratory in Guayaquil. Sub-samples of the pulps have been analyzed by SGS for Au by Fire Assay (30g) with AAS determination and gravimetric determination where over limit. Sub-samples of the pulps are also assayed for a multi element suite by 4-acid digest with ICPMS determination (including Cu, Mo, Ag, Zn, Pb, S and Fe). All assay techniques are partial assays of the total sample. Samples submitted by CEL include standards (CRM), blanks and duplicate samples to provide some control (QAQC) on the accuracy and precision of the analyses. 8 different CRM pulp samples have been submitted with the core samples. All 8 are certified for Au, 3 are certified for Ag, 7 are certified for Cu, 1 is certified for Fe and 4 are certified for Mo. For Au, of 352 CRM pulp analyses, 346 are within +/- 2 SD (98%) For Cu, of 338 CRM pulp analyses, 127 are within +/- 2 SD (95%) For Fe, of 15 CRM pulp analyses, all are within +/- 2 SD (95%) For Fe, of 15 CRM pulp analyses, all are within +/- 2 SD (95%) For Fe, of 15 CRM pulp analyses, all are within +/- 2 SD (95%) 162 samples of pulp that are known to have a blank Au value have been included with the samples submitted. 24 samples returned Au values of >5 ppb (up to 11 ppb) indicating only mild instrument calibration or contamination dring fire assay. 474 ¼ core duplicate samples have been submitted. The duplicate analyses for Au, Ag, Cu, Pb, Zn, As and Mo have been analysed. The duplicate samples follow very closely the original analyses providing assurance that the samples is appropriate.

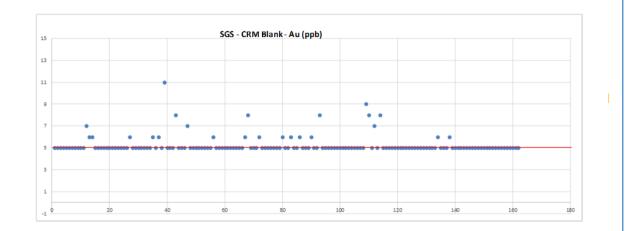
Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

iteria	JORC Code explanation	Commentary			
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $			305-00M1-Ma(%)-mean v/-300
		SG: CLM2-As (perc) - mean (-200)	555-GM37-02 (N)-mman/-2500		555-CM32-Ma(N)-Make 4/-500
			565-CM3-54(N)-mem r/-250	5G5-CIMG-Aging mi-man 4/-2G5	561-CRU3-Ma (%)-man (/-3 IB)
		562 - CMM-4-Auguetti (part) - Auguetti (part) -	525-CIM-Cu (prot-iman v/-320)	502-01MH-Ag bynd-manu/J2E	501-000-Ma (%-main 4)-300 = - - - - - - - - - - - - -
			555-C2M5-C2M5-C2M5-C2M5-C2M5-C2M5-C2M5-C	302-01M5-04ggA)-man-(-32)	
		SEC - CMARC-Au (ppm) - means w/-250 Image: colspan="2">Image: colspan="2">SEC - CMARC-Au (ppm) - means w/-250 Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2" Image: colspan="2">Image: colspan="2" Image: colspan="2">Image: colspan="2" Image: colspan="2"<	SSS-CBM6-Cur (N)-mann-(-250)		
		20 20 2007-Au (ppr) - mont s/-200) 20 4 4 4 20 4 4 4 20 4 4 4 20 4 4 4 20 4 4 4 4	SSS-CBM7-Ckr (N) -main (-750)		
		SEG: CIMB-Au (ppr) means 4-350 and and and			

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street


West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

JORC Code explanation

Commentary

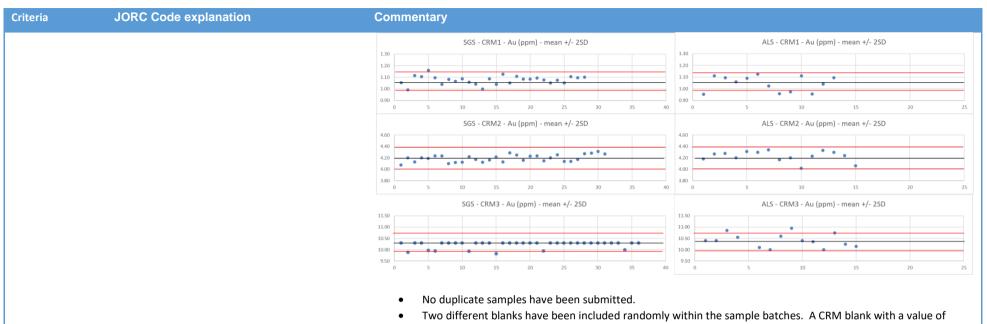
Historic:

• No information is available on the methods used to analyse the historic soil or drill core samples. Assay results are not provided in this report.

Soil samples have been analysed by GK for Au, Cu, Ag, Zn, Pb, As, Mn, Ni, Cr, Mo, Sn, V, Ti, Co, B, Ba, Sb, Bi and Hg. Pulps have been securely retained and check assaying is planned.

- Drill core was partially assayed for gold only with assays undertaken by Goldking's on site laboratory
- CEL samples of drill core re-sampled by CEL. Blanks and CRM (standards) were added to the batches to check sample preparation and analysis.

3 separate CRM's were included in the batches sent for analysis. All three have certified Au values. The results of the analysis of the CRM are shown below. With a few exceptions, the CRM has returned results within +/- 2 SD of the certified reference value. There is no bias in the results returned from either SGS or ALS laboratories. CRM3 analyses by fire assay at SGS did not include overlimit (>10 g/t).


Challenger Gold Limited ACN 123 591 382 ASX: CEL

Criteria

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

(0.01 ppm (10 ppb) Au was used initially. More recent batches have used a blank gravel material which has no certified reference value. The results are shown below. The first 4 gravel blanks show elevated Au values which is believed to be due to contamination of the blank prior to submission and not due to laboratory contamination. With one exception, the blanks have returned values below 10 ppb.

Challenger Gold Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
		SGS - CRM Blank - Au (ppb)
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 El Guayabo: CEL Drilling: Samples from significant intersections have not been checked by a second laboratory. No holes have been twinned. Data from logging and assaying is compiled into a database at the Project and is backed up in a secure location. CEL GIS personnel and company geologists check and verify the data. No adjustments are made to any of the assay data. Historic: All intersections with results greater than 0.5 g/t were re-assayed using the "blaster" technique - a screen type fire analysis based on a pulverized sample with a mass of about 5 kg. Additionally, Odin re-assayed the many of the higher-grade sections with re-assay results demonstrating repeatability of the original results. Neither Newmont nor Odin attempted to verify intercepts with twinned holes Data was sourced from scanned copies of original drill logs and in some cases original paper copies of assay sheets are available. This data is currently stored in a drop box data base with the originals held on site. No adjustments to assay data were made. CEL assay data has not been independently verified or audited. Data is stored electronically in MS Excel and PD format from the Laboratory and entered into a Project database for analysis. There has been no adjustment of the data.
		Colorado V:
enger Gold Limited 23 591 382 EL	Issued CapitalAustralian Registered1,261.1m sharesLevel 110m options1205 Hay Street44.2m perf rightsWest Perth WA 6005	d Office Directors Contact Kris Knauer, MD and CEO T: +61 8 6380 9235 Sergio Rotondo, Chairman E: admin@challengerex.com Sonia Delgado, Executive Director

Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary
		 There is no information available on the verification of sample and assay results. No assay data is provided in this report. Soil replicate samples and second split assay results have been provided but not fully analysed at this stage. Of the 4,495 soil samples in the GK database, 166 are replicate samples and 140 are second split re-analyses. 37 samples have no coordinates in the database. The remaining 4,152 have analyses for all 19 elements indicated above. Significant intersections have been internally checked against the assay data received. The data received has been archived electronically and a database of all drill information is being developed. There is no adjustment of the assay data.
Location of data points	 Accuracy and quality of surveys used to drill holes (collar and down-hole survey trenches, mine workings and other loco used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic of 	 CEL Drilling: Drill hole collars are surveyed after the drilling using a DGPS. The co-ordinate system used is PSAD 1956, UTM zone 17S. Down-hole surveys are performed at regular intervals down hole (nominally 50 metres or as required by the
		 Historic: Newmont undertook survey to located drill holes in accordance with best practice at the time. No formal check surveying has been undertaken to verify drill collar locations at this stage Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum: Provisional S American 1956 Quality of topographic control appears to be+ - 1 meter which is sufficient for the exploration activities
		 undertaken. Rock chip samples have been located using topographic maps with the assistance of hand-held GPS. Colorado V: Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum: Provisional S American 1956 No information is available on the collar and down-hole survey techniques used on the Colorado V concession. Rock chip sample locations are determined by using a handheld GPS unit which is appropriate for the scale of th mapping program being undertaken.
Data spacing and distribution	- Data spacing for reporting of Explorati Results.	
enger Gold Limited 23 591 382 EL	Issued CapitalAustralian1,261.1m sharesLevel 110m options1205 Hay S44.2m perf rightsWest Perth	

Criteria	JORC Code explanation	Commentary
	 Whether the data spacing and distribution is sufficient to establish the degree of geologic and grade continuity appropriate for the Mineral Resource and Ore Reserve estimatio procedure(s) and classifications applied. Whether sample compositing has been applied. 	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieve unbiased sampling of possible structures and the extent to which this is known, considerin the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drill pads are located in the best possible location to ensure there is no bias introduced, subject to the
Sample security	 The measures taken to ensure sample security. 	 El Guayabo: CEL Samples: All CEL samples are held in a secure compound from the time they are received from the drillers to the time they are loaded onto a courier truck to be taken to the laboratory. The logging and sampling is done in a fenced and gated compound that has day and night security. Samples are sealed in bags and then packed in secure poly weave bags for transport
		 Historic: Newmont sent all its field samples to the Bondar Clegg sample preparation facility in Quito for preparation. From there, approximately 100 grams of pulp for each sample was air freighted to the Bondar Clegg laboratory (now absorbed by ALS-Chemex) in Vancouver, for analysis. There is no record of any special steps to monitor the security of the samples during transport either between the field and Quito, or between Quito and Vancouver. However, Newmont did insert its own standards at 25 sample intervals as a control on analytical quality. CEL samples are kept in a secure location and prepared samples are transported with appropriate paperwork, securely by registered couriers. Details of the sample security and chain of custody are kept at the Project office for future audits.
		Colorado V:
		 GK analysed samples in an on-site laboratory. It is understood that the samples have remained on site at all times.
		 CEL have collected samples at the core shed at El Guayabo and secured the samples in polyweave sacks for transport by courier to SGS Laboratories in Guayaquil for preparation. SGS in Guayaquil courier the prepared
enger Gold Limited 123 591 382 CEL	Issued CapitalAustralian Regist1,261.1m sharesLevel 110m options1205 Hay Street44.2m perf rightsWest Perth WA 60	Kris Knauer, MD and CEOT: +61 8 6380 9235Sergio Rotondo, ChairmanE: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
		sample pulps to SGS in Peru for analysis. Photographs and documentation are retained to demonstrate the chain of custody of the samples at all stages.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 El Guayabo: CEL drilling: There has been no audit or review of the sampling techniques and data Historic: The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy. There have been no audits of reviews of CEL data for the El Guayabo. Colorado V: No audits or reviews of sampling techniques and data is known. Goldking did twin two earlier holes with results still being compiled.

Section 2: Reporting of Exploration Results -El Guayabo Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Co	ommentary	
Mineral tenement and land tenure status	 Type, reference name/n ownership including agr issues with third parties partnerships, overriding interests, historical sites park and environmental The security of the tenus reporting along with an obtaining a licence to op 	eements or material such as joint ventures, royalties, native title , wilderness or national settings. re held at the time of y known impediments to	Mining Resources S.A (TMR S. are no overriding royalties on The property has no historical The mining title grants the ow and processing of minerals ov years. Under its option agreen fixed and floating charge) ove	mining concession is located within El Oro Province. The concession is held by Torata S.A) and was granted in compliance with the Mining Act ("MA") in on April 27, 2010. Ther on the project other than normal Ecuadorian government royalties. cal sites, wilderness or national park issues. owner an exclusive right to perform mining activities, including, exploration, exploitation over the area covered by the prior title for a period of 25 years, renewable for a further 25 eement, the owner has been granted a negative pledge (which is broadly equivalent to a ver the concession. In addition, a duly notarized Irrevocable Promise to Transfer executed has been lodged with the Ecuador Mines Department.
lenger Gold Limited 123 591 382	Issued Capital 1,261.1m shares	Australian Registered Office Level 1	Directors Kris Knauer, MD and CEO	Contact T: +61 8 6380 9235

ASX: CEL

1,261.1m shares 10m options 44.2m perf rights Level 1 1205 Hay Street West Perth WA 6005

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary
		 The Colorado V mining concession (Code No. 3363.1) located in Bellamaria, Santa Rosa, El Oro, Ecuador was granted compliance with the Mining Act ("MA") in on July 17, 2001. It is adjacent to El Guayabo concession to the north. The concession is held by Goldking Mining Company S.A. There are no overriding royalties on the project other than normal Ecuadorian government royalties. The concession has no historical sites, wilderness or national park issues. The El Guayabo 2 (Code. 300964) mining concession is located Torata parish, Santa Rosa canton, El Oro province, Ecuador. The concession is held by T Mr. Segundo Ángel Marín Gómez and Mrs. Hermida Adelina Freire Jaramillo and was granted in compliance with the Mining Act ("MA") on 29April 29, 2010. There are no overriding royalties on the project other than normal Ecuadorian government royalties. The property has no historical sites, wilderness, or national park issues.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 El Guayabo: Previous exploration on the project has been undertaken by Newmont and Odin from 1994 to 1997. This included surface pit and rock chip geochemistry, followed by the drilling of 33 drill holes for a total of 7605.52 meters) to evaluate the larger geochemical anomalies. The collection of all exploration data by Newmont and Odin was of a high standard and had appropriate sampling techniques and intervals, adequate QA/QC and custody procedures, and appropriate duplicates and blanks used for determining assay precision and accuracy. The geological interpretation of this data, including core logging and follow up geology was designed and directed by in-country inexperienced geologists. It appears to have been focused almost exclusively for gold targeting surface go anomalies or the depth extensions of higher-grade gold zones being exploited by the artisanal miners. The geologic logs for all drill holes did not record details that would have been typical, industry standards for porphyry copper exploration at that time. Several holes which ended in economic mineralisation have never been followed up. In short, important details which would have allowed the type of target to be better explored were missed which in turn presents an opportunity to the current owner. Colorado V: All exploration known has been completed by GK. Drilling has been done from 2016 to 2019. 56 drill holes, totaling 21,471.83m have been completed by GK. El Guayabo 2I: Exploration work undertaken by the previous owner was limited to field mapping and sampling including assaying of small number of samples for gold, silver, copper, lead and zinc. The report is only available in Spanish and assays were conducted in a local laboratory in Ecuador with the majority of this work undertaken in 2017.
Geology	- Deposit type, geological setting and mineralisation.	
enger Gold Limited 23 591 382 EL	Issued CapitalAustralian1,261.1m sharesLevel 110m options1205 Hay St44.2m perf rightsWest Perth	

Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Comment	ary						
		quartz	diorite and da	icite. Minera	alization has	s been recog	gnized in:		
		– St	eeply plungin	g breccia bo	dies (up to 2	200 m in dia	ameter) ass	ociated with	n intrusive o
			etamorphic h	-			··· , ···		
			orphyry style v					-:+ /	
		– Di	sseminated p	yrite and py	rrhotite in t	he intrusion	ns and in th	e metamorp	phic host ro
Drill hole	- A summary of all information material to the	ne El Guaya	bo Historic d	ill hole info	rmation is p	provided be	low.		
Information	understanding of the exploration results	DRILLHC		NORTH	ELEVATION	AZIMU TH	DIP	FINAL	DRILLED
•	including a tabulation of the following	CODE	· · /	(N)	(m.a.s.l)	(°)	(°)	DEPTHP	BY
		DDHGY		9605517.20	839.01	360	-90.0	249.20	Odin
	information for all Material drill holes:	DDHGY				360.0	-90.0	272.90	Odin
	\circ easting and northing of the drill hole co	llar DDHGY			1063.37	305.0	-60.0	295.94	Odin
	\circ elevation or RL (Reduced Level – elevation	on DDHGY		9606025.18	983.2	125.0	-60.0	172.21	Odin
	above sea level in metres) of the drill he	, DDHGT		9606405.29	989.87	145.0	-60.0	258.27	Odin
					983.11	305.0	-60.0	101.94	Odin
	collar	DDHGY DDHGY		9606025.80 9606405.74	983.16 989.86	305.0 145.0	-75.0 -75.0	127.00 312.32	Odin Odin
	$\circ \hspace{0.1in}$ dip and azimuth of the hole	DDHGY			989.86	45.0	-75.0	166.25	Odin
	$\circ $ down hole length and interception dep	th DDHGY		9606025.88	983.12	225.0	-75.0	194.47	Odin
	 o hole length. 	DDHGY		9606405.33	989.83	160.0	-60.0	241.57	Odin
	5			9606035.53	996.98	125.0	-60.0	255.7	Odin
	- If the exclusion of this information is justifie	DDHGY		9605975.42	997.292	320.0	-65.0	340.86	Odin
	on the basis that the information is not	DDHGY		9605975.64	997.285	320.0	-75.0	309.14	Odin
	Material and this exclusion does not detrac			9605912.35	977.001	320.0	-60.0	251.07	Odin
	from the understanding of the report, the	DDHGY	16 629285.92	9606044.44	1036.920	320.0	-60.0	195.73	Odin
		DDHGY		9606058.64	1021.053	125.0	-82.0	280.04	Odin
	Competent Person should clearly explain w	DDHOT		9606035.45	977.215	140.0	-60.0	160.35	Odin
	this is the case.	DDHGY	19 629087.23	9606034.98	997.332	45.0	-53.0	175.41	Odin
		DRILLHO	LE EAST	NORTH	ELEVATION	AZIMUTH	DIP	FINAL	DRILLED
		CODE		(N)	(m.a.s.l)	(°)	(°)	DEP THP	BY
		JDH01		9606463.27		280.0	-60.0		Newmont
		JDH02		9606353.12		280.0	-45.0		Newmont
		JDH03		9606200.35		280.0	-45.0	260.97	Newmont
		JDH04		9606324.00		280.0	-45.0		Newmont
		JDH05		9606248.70	1066.24	280.0	-45.0	210.37	Newmont
		JDH06		9606416.13		150.0	-45.0		Newmont
		JDH07				150.0	-75.0		Newmont
		JDH08		9606416.13		150.0	-60.0		Newmont
		JDH09		9606408.43		150.0	-45.0		Newmont
		JDH10		9606813.62	-	270.0	-45.0		Newmont
		JDH11	628878.64	9606674.39		270.0	-45.0		Newmont
		JDH12 JDH13		9606765.31 9606058.49		150.0 125.0	-60.0 -60.0		Newmont
		JDH13		9605562.77	852.59	90.0	-60.0	239.33	Newmont
		JUHI2	020097.15	9000002.11	032.39	90.0	-45.0	239.32	Inewmont
enger Gold Limited	Issued Capital Australian Reg	istered Office Di	rectors		Contact				
23 591 382	1,261.1m shares Level 1		is Knauer, MD and	I CEO	T: +61 8 63	80 9235			
-	100 11 100 100 100 100 100 100 100 100				F 1 1 0				

Chall ACN 123 591 382 ASX: CEL

1,261.1m shares 10m options . 44.2m perf rights

1205 Hay Street West Perth WA 6005

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

riteria	JORC Code explanation	Commer	ntary						
		Historic Co	lorado V Drill Hole Infor	mation:					
		Hole ID	East (m)	North (m)	Elevation	Azimuth (°)	Dip (°)	Final depth	Driller
		ZK0-1	626378.705	9608992.99	204.452	221	-60	413.60	Shandong Zhaoj
		ZK0-2	626378.705	9608992.99	204.452	221	-82	581.60	Shandong Zhaoj
		ZK0-3	626475.236	9609095.444	197.421	221	-75	463.00	Shandong Zhaoj
		ZK0-4	626476.119	9609098.075	197.225	221	-90	458.00	Shandong Zhaoj
		ZK0-5	626475.372	9609100.909	197.17	300	-70	624.00	Shandong Zhao
		ZK1-1	626310.629	9608865.923	226.385	61	-70	514.60	Shandong Zhao
		ZK1-2	626313.901	9608867.727	226.494	150	-70	403.10	Shandong Zhao
		ZK1-3	626382.401	9608894.404	229.272	61	-70	425.00	Shandong Zhao
		ZK1-4	626502.206	9608982.539	227.333	61	-70	379.50	Shandong Zhao
		ZK1-5	626497.992	9608979.449	227.241	241	-70	419.50	Shandong Zhao
		ZK1-6	626500.813	9608979.367	227.315	180	-70	607.50	Shandong Zhao
		ZK1-7	626498.548	9608979.541	227.28	241	-82	453.18	Shandong Zhao
		ZK1-8	626501.094	9608980.929	227.208	61	-85	556.00	Shandong Zhao
		ZK1-9	626416.4	9609040.6	202.416	203	-23	220.00	Lee Mining
		ZK2-1	626329.859	9609005.863	213.226	221	-90	395.50	Shandong Zhao
		ZK3-1	628295.833	9608947.769	309.987	279	-38	372.48	
		ZK3-1-A	626416.4	9609040.6	202.416	179	-29	295.52	Lee Mining
		ZK3-2	628295.833	9608947.769	309.987	205	-30	364.80	8
		ZK3-4	628295.833	9608947.769	309.987	170	-30	322.96	
		ZK4-1	626281.066	9609038.75	224.176	221	-90	434.00	Shandong Zhao
		ZK4-2	626281.066	9609038.75	224.176	221	-70	390.50	Shandong Zhao
		ZK4-3	626386.498	9609186.951	225.517	221	-70	650.66	Shandong Zhao
		ZK4-4	626287.7817	9609031.298	215	215	-05	285.00	
		ZK5-1	626377.846	9608790.388	273.43	221	-78	321.90	Shandong Zhac
		ZK5-2	626377.539	9608793.769	273.542	41	-78	319.00	Shandong Zhao
		ZK5-3	626383.556	9608800.999	273.622	330	-70	446.50	Shandong Zhao
		ZK5-4	626383.556	9608800.999	273.622	330	-78	508.00	Shandong Zhao
		ZK5-5	626432.795	9608847.735	242.572	61	-70	532.00	Shandong Zhac
		ZK6-1	626230.28	9609020.202	260.652	221	-70	552.60	Shandong Zhao
		ZK6-2	626165.623	9608991.594	271.928	221	-70	531.00	Shandong Zhao
		ZK10-1	626700.8538	9609675.002	126.617	221	-53	454.00	Lee Mining
		ZK10-2	626744.7	9609711	110.817	310	-30	318.82	200
		ZK10-2 ZK10-3	626744.7	9609711	110.817	310	-60	331.52	
		ZK10 5 ZK11-1	626446.263	9608705.238	290.028	221	-78	237.50	Shandong Zhao

Issued Capital 1,261.1m shares 10m options . 44.2m perf rights

Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

T: +61 8 6380 9235

E: admin@challengerex.com

riteria	JORC Code explanation	Commentary							
		ZK12-1	626088.326	9609034.197	314.552	221	-70	531.50	Shandong Zhaoj
		ZK12-2	626019.538	9608961.409	294.649	221	-70	510.60	Shandong Zhaoj
		ZK13-1	627763.877	9609906.484	197.899	180	-70	394.00	Shandong Zhao
		ZK13-2	627757.925	9609713.788	234.34	0	-70	194.00	Shandong Zhao
		ZK16-1	626432.95	9609539.705	207.288	153	-45	330.00	
		ZK16-2	626432.95	9609539.705	207.288	183	-45	394.00	
		ZK18-1	627123.327	9609846.268	142.465	180	-70	410.50	Shandong Zha
		ZK19-1	626753.271	9608802.634	386.627	221	-70	548.60	Shandong Zha
		ZK100-1	626170.882	9608923.778	251.177	131	-70	415.00	Shandong Zha
		ZK103-1	628203.1453	9607944.85	535.324	215	-53	524.21	Lee Mining
		ZK105-1	628172.5923	9607826.055	541.244	183	-54	404.57	Lee Mining
		ZK205-1	626257.123	9608795.904	243.297	160	-70	347.00	Shandong Zha
		SAZKO-1A	627477.062	9609865.618	217.992	180	-70	569.10	Shandong Zha
		SAZKO-2A	627468.807	9609805.054	213.63	180	-70	407.50	Shandong Zha
		SAZK2-1	627330.0126	9609556.466	201.145	76	-05	430.89	Lee Mining
		SAZK2-2	627330.0126	9609556.466	201.145	62	-05	354.47	Lee Mining
		СК2-1	626328.573	9609000.856	216.798	221	-45	121.64	Shandong Zha
		СК2-2	626328.573	9609000.856	216.798	251	-45	171.85	Shandong Zha
		СК2-3	626328.573	9609000.856	216.798	191	-45	116.40	Shandong Zha
		СК2-4	626328.573	9609000.856	216.798	221	-70	146.12	Shandong Zha
		CK2-5	626254.4315	9608931.693	190.593	342	-05	357.56	Lee Mining
		СК2-6	626298.1066	9608961.819	203.231	332	-18	392.56	Lee Mining
		СКЗ-1	626359.641	9608859.373	205.96	20	-15	185.09	Shandong Zha
		СКЗ-2	626359.641	9608859.373	205.96	163	00	21.75	Shandong Zha
		СКЗ-З	626359.641	9608859.373	205.96	50	-15	138.02	Shandong Zha
		СК5-1	626460.1233	9608906.592	202.124	194	-74	273.56	Lee Mining
		СК5-2	626457.0999	96089.8.4999	202.126	251	-69	273.11	Lee Mining
		CK13-1	626610.0642	9608838.445	202.556	41	-05	227.10	Lee Mining
		CK13-2	626610.0642	9608838.445	202.556	41	-40	231.16	Lee Mining
		CK13-3	626605.2307	9608833.471	202.556	221	-59	197.06	Lee Mining
		CK13-4	626604.0848	9608836.544	203.013	209	-45	176.57	Lee Mining
		CK13-5	626607.5245	9608832.296	203.013	136	-45	184.70	Lee Mining
		CK21-1	626693.536	9608691.062	204.927	41	00	143.47	Lee Mining

CEL: El Guayabo Project (Guayabo Concession), Camp #1, Phase #1, Drill Hole Information

	Hole ID	East (m)	North (m)	Elevation	Azimuth (°)	Dip (°)	Final depth	Driller
Issued Capital 1,261.1m shares 10m options 44.2m perf rights	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director	_	0 9235 nallengerex.com				

Criteria	JORC Code explanation	Commenta	ry						
		GYDD-21-001	628893.56	9606473.61	1074.98	330	-60	800.46	CEL
		GYDD-21-002		9606889.41	913.03	330	-60	291.70	CEL
		GYDD-21-002	A 629648.91	9606888.00	913.71	330	-60	650.58	CEL
		GYDD-21-003	628613.31	9606603.66	1031.61	149	-60	723.15	CEL
		GYDD-21-004	628612.169	9606605.66	1031.91	330	-60	696.11	CEL
		GYDD-21-005	628433.90	9606380.35	962.07	329	-60	632.05	CEL
		GYDD-21-006	628435.80	9606380.46	962.58	100	-60	365.26	CEL
		GYDD-21-007	628087.05	9606555.24	840.093	150	-60	651.80	CEL
		GYDD-21-008	628435.62	9606377.74	962.24	150	-60	283.68	CEL
		GYDD-21-009	628932.60	9606035.43	987.81	100	-60	692.67	CEL
		GYDD-21-010	628088.44	9606552.79	839.92	180	-60	888.60	CEL
		GYDD-21-011		9606169.64	1018.56	330	-60	314.46	CEL
		GYDD-21-012	628844.64	9605438.73	870.24	129	-60	797.65	CEL
		GYDD-21-013		9605725.52	901.76	190	-60	517.45	CEL
		GYDD-22-014		9605761.53	955.53	100	-60	783.60	CEL
		GYDD-22-015		9606377.19	961.88	150	-72	368.26	CEL
		GYDD-22-016	628267.60	9606450.31	872.25	150	-62	469.75	CEL
		Hole ID	East (m)	North (m)	Elevation	Azimuth	Dip	Final depth	Driller
		GYDD-22-017	627096.13	9605850.15	885.89	(°) 225	(°) -60	860.75	CEL
		GYDD-22-018	627408.50	9606259.17	961.10	150	-60	734.05	CEL
		GYDD-22-019	627018.22	9606591.53	860.80	075	-60	861.05	CEL
		GYDD-22-020	627410.33						UEL
				9000201./9	901.50	225	-60		
		GY2DD-22-001		9606261.79 9604368.13	961.50 496.50	225 100	-60 -60	750.00	CEL
			l 627271.92	9604368.13	496.50	100	-60	750.00 776.40	CEL CEL
		GY2DD-22-001 GYDD-22-021 GYDD-22-022						750.00	CEL
		GYDD-22-021	L 627271.92 629039.50	9604368.13 9605861.33	496.50 893.20	100 330	-60 -60	750.00 776.40 812.85	CEL CEL CEL
		GYDD-22-021 GYDD-22-022	L 627271.92 629039.50 628988.58	9604368.13 9605861.33 9606167.81	496.50 893.20 1017.10	100 330 150	-60 -60 -60	750.00 776.40 812.85 702.85	CEL CEL CEL CEL
		GYDD-22-021 GYDD-22-022 GYDD-22-023	L 627271.92 629039.50 628988.58 629058.43	9604368.13 9605861.33 9606167.81 9606272.80	496.50 893.20 1017.10 1045.70	100 330 150 150	-60 -60 -60 -60	750.00 776.40 812.85 702.85 795.55	CEL CEL CEL CEL CEL
		GYDD-22-021 GYDD-22-022 GYDD-22-023 GYDD-22-024	L 627271.92 629039.50 628988.58 629058.43 628971.40	9604368.13 9605861.33 9606167.81 9606272.80 9606104.67	496.50 893.20 1017.10 1045.70 1003.00	100 330 150 150 150	-60 -60 -60 -60	750.00 776.40 812.85 702.85 795.55 650.00	CEL CEL CEL CEL CEL CEL
		GYDD-22-021 GYDD-22-022 GYDD-22-023 GYDD-22-024 GYDD-22-025	L 627271.92 629039.50 628988.58 629058.43 628971.40 629055.83	9604368.13 9605861.33 9606167.81 9606272.80 9606104.67 9606277.30	496.50 893.20 1017.10 1045.70 1003.00 1045.50	100 330 150 150 150 330	-60 -60 -60 -60 -60	750.00 776.40 812.85 702.85 795.55 650.00 1194.05	CEL CEL CEL CEL CEL CEL CEL
		GYDD-22-021 GYDD-22-022 GYDD-22-023 GYDD-22-024 GYDD-22-025 GYDD-22-026	L 627271.92 629039.50 628988.58 629058.43 628971.40 629055.83 628949.34	9604368.13 9605861.33 9606167.81 9606272.80 9606104.67 9606277.30 9606571.90	496.50 893.20 1017.10 1045.70 1003.00 1045.50 1062.60	100 330 150 150 150 330 345	-60 -60 -60 -60 -60 -60	750.00 776.40 812.85 702.85 795.55 650.00 1194.05 1082.45	CEL CEL CEL CEL CEL CEL CEL CEL
		GYDD-22-021 GYDD-22-022 GYDD-22-023 GYDD-22-024 GYDD-22-025 GYDD-22-026 GYDD-22-027	L 627271.92 629039.50 628988.58 629058.43 628971.40 629055.83 628949.34 628725.86	9604368.13 9605861.33 9606167.81 9606272.80 9606104.67 9606277.30 9606571.90 9606619.12	496.50 893.20 1017.10 1045.70 1003.00 1045.50 1062.60 1047.88	100 330 150 150 150 330 345 150	-60 -60 -60 -60 -60 -60 -60 -60	750.00 776.40 812.85 702.85 795.55 650.00 1194.05 1082.45 875.35	CEL CEL CEL CEL CEL CEL CEL CEL
		GYDD-22-021 GYDD-22-022 GYDD-22-023 GYDD-22-024 GYDD-22-025 GYDD-22-026 GYDD-22-027 GYDD-22-028	L 627271.92 629039.50 628988.58 629058.43 628971.40 629055.83 628949.34 628725.86 628488.59 628391.57 628723.89	9604368.13 9605861.33 9606167.81 9606272.80 9606104.67 9606277.30 9606571.90 9606619.12 9606449.24	496.50 893.20 1017.10 1045.70 1003.00 1045.50 1062.60 1047.88 961.82	100 330 150 150 330 345 150 150	-60 -60 -60 -60 -60 -60 -60 -75	750.00 776.40 812.85 702.85 795.55 650.00 1194.05 1082.45 875.35 521.20	CEL CEL CEL CEL CEL CEL CEL CEL CEL CEL
		GYDD-22-021 GYDD-22-022 GYDD-22-023 GYDD-22-024 GYDD-22-025 GYDD-22-026 GYDD-22-027 GYDD-22-028 GYDD-22-028 GYDD-22-029	L 627271.92 629039.50 628988.58 629058.43 628971.40 629055.83 628949.34 628725.86 628488.59 628391.57	9604368.13 9605861.33 9606167.81 9606272.80 9606104.67 9606277.30 9606571.90 9606619.12 9606649.24 9606502.21	496.50 893.20 1017.10 1045.70 1003.00 1045.50 1062.60 1047.88 961.82 904.05	100 330 150 150 330 345 150 150 150	-60 -60 -60 -60 -60 -60 -60 -75 -65	750.00 776.40 812.85 702.85 795.55 650.00 1194.05 1082.45 875.35 521.20 528.95	CEL CEL CEL CEL CEL CEL CEL CEL CEL CEL
nger Gold Limited	Issued Capital	GYDD-22-021 GYDD-22-022 GYDD-22-023 GYDD-22-024 GYDD-22-025 GYDD-22-026 GYDD-22-027 GYDD-22-028 GYDD-22-029 GYDD-22-030 GYDD-22-031	L 627271.92 629039.50 628988.58 629058.43 628971.40 629055.83 628949.34 628725.86 628488.59 628391.57 628723.89	9604368.13 9605861.33 9606167.81 9606272.80 9606104.67 9606571.90 96066571.90 9606619.12 9606449.24 9606502.21 9606622.50	496.50 893.20 1017.10 1045.70 1003.00 1045.50 1062.60 1047.88 961.82 904.05 1047.60	100 330 150 150 330 345 150 150 150 330	-60 -60 -60 -60 -60 -60 -60 -75 -65 -60	750.00 776.40 812.85 702.85 650.00 1194.05 1082.45 875.35 521.20 528.95 691.20	CEL CEL CEL CEL CEL CEL CEL CEL CEL CEL

ASX: CEL

1,261.1m shares 10m options . 44.2m perf rights

1205 Hay Street

West Perth WA 6005

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director

T: +61 8 6380 9235 E: admin@challengerex.com

Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

riteria	JORC Code explanation	Commentary							
		GYDD-23-032	628669.96	9606599.34	1030.39	150	-60	781.45	CEL
		GYDD-23-033	628307.35	9606457.68	891.75	150	-70	565.85	CEL
		GYDD-23-034	628544.67	9606432.20	987.21	150	-70	413.65	CEL
		GYDD-23-035	628235.55	9606391.22	879.35	150	-60	381.85	CEL
		GYDD-23-036	628588.16	9606460.88	975.68	330	-70	767.45	CEL
		GYDD-23-037	628958.10	9605809.79	900.54	330	-60	823.10	CEL
		GYDD-23-038	628191.89	9606645.00	753.18	150	-55	651.80	CEL
		GYDD-23-039	628752.96	9605770.05	954.41	150	-60	812.40	CEL
		GYDD-23-040	628702.92	9606813.34	1040.18	150	-60	352.40	CEL
		GYDD-23-041	628788.051	9605899.887		150	-60	779.00	CEL
		GYDD-23-042 GYDD-23-043	628960.507 628544.25	9605803.955 9606848.97	898.063 898.569	150 150	-60 -60	746.40 742.15	CEL CEL
		CEL: El Guayabo P	roject (Guayabo	Concession), Ca	mp #1, Phase #	#1 & #2 Chanr			011
		CEL Channels take			-	-			_
			Location	Start	Start	Start	End	End	,E
		Channel_ID	Target	East (m)	North (m)	Elev. (m)	East (m)	North (m	i) Elev
			GY						
		CSADRI-001	GY B	629097.60	9605892.67	903.12	629181.25	9606057.6	67 90
		CSADRI-001 CSADRI-002			9605892.67 9606038.20	903.12 904.26	629181.25 628712.25	9606057.6 9606253.4	
			В	629168.77					14 90
		CSADRI-002	B GY-B	629168.77 628530.10	9606038.20	904.26	628712.25	9606253.4	14 90 08 91
		CSADRI-002 CSADRI-003	B GY-B GY-B	629168.77 628530.10 628555.19	9606038.20 9606353.27	904.26 912.15	628712.25 628599.15	9606253.4 9606318.0	449008912391
		CSADRI-002 CSADRI-003 CSADRI-004	B GY-B GY-B GY-B	629168.77 628530.10 628555.19 628865.19	9606038.20 9606353.27 9606336.81	904.26 912.15 912.18	628712.25 628599.15 628542.18	9606253.4 9606318.0 9606318.2	44 90 08 91 23 91 57 85
		CSADRI-002 CSADRI-003 CSADRI-004 CSBARR-001	B GY-B GY-B GY-B GY-C	629168.77 628530.10 628555.19 628865.19	9606038.20 9606353.27 9606336.81 9605519.64	904.26 912.15 912.18 854.70	628712.25 628599.15 628542.18 628846.18	9606253.4 9606318.0 9606318.2 9605528.5	44 90 08 91 23 91 57 85 20 85
		CSADRI-002 CSADRI-003 CSADRI-004 CSBARR-001 CSBARR-004	B GY-B GY-B GY-C GY-C	629168.77 628530.10 628555.19 628865.19 628835.51	9606038.20 9606353.27 9606336.81 9605519.64 9605533.39	904.26 912.15 912.18 854.70 856.63	628712.25 628599.15 628542.18 628846.18 628833.43	9606253.4 9606318.0 9606318.2 9605528.5 9605557.2	44 90 08 91 23 91 57 85 20 85 92 85
		CSADRI-002 CSADRI-003 CSADRI-004 CSBARR-001 CSBARR-004 CSBARR-005	B GY-B GY-B GY-C GY-C GY-C	629168.77 628530.10 628555.19 628865.19 628835.51 628832.16 628564.61	9606038.20 9606353.27 9606336.81 9605519.64 9605533.39 9605532.92	904.26 912.15 912.18 854.70 856.63 856.91	628712.25 628599.15 628542.18 628846.18 628833.43 628825.05	9606253.4 9606318.0 9606318.2 9605528.5 9605557.2 9605525.5	44 90 08 91 23 91 57 85 20 85 92 85 29 104
		CSADRI-002 CSADRI-003 CSADRI-004 CSBARR-001 CSBARR-004 CSBARR-005 CSBQCU1-001	B GY-B GY-B GY-C GY-C GY-C GY-A	629168.77 628530.10 628555.19 628865.19 628835.51 628832.16 628564.61 628552.80	9606038.20 9606353.27 9606336.81 9605519.64 9605533.39 9605532.92 9606364.46	904.26 912.15 912.18 854.70 856.63 856.91 1049.49	628712.25 628599.15 628542.18 628846.18 628833.43 628825.05 628555.37	9606253.4 9606318.0 9606318.2 9605528.5 9605557.2 96055525.5 9606328.2	44 90 08 91 23 91 57 85 20 85 92 85 92 104 18 104
		CSADRI-002 CSADRI-003 CSADRI-004 CSBARR-001 CSBARR-004 CSBARR-005 CSBQCU1-001 CSBQCU1-002	B GY-B GY-B GY-C GY-C GY-C GY-A GY-A	629168.77 628530.10 628555.19 628865.19 628835.51 628832.16 628564.61 628552.80 628561.98	9606038.20 9606353.27 9606336.81 9605519.64 9605533.39 9605532.92 9606364.46 9606332.35	904.26 912.15 912.18 854.70 856.63 856.91 1049.49 1050.46	628712.25 628599.15 628542.18 628846.18 628833.43 628825.05 628555.37 628548.87	9606253.4 9606318.0 9606318.2 9605528.5 9605557.2 9605525.5 9606328.2 9606324.2	44 90 08 91 23 91 57 85 20 85 92 85 92 85 29 104 18 104 91 104
		CSADRI-002 CSADRI-003 CSADRI-004 CSBARR-001 CSBARR-004 CSBARR-005 CSBQCU1-001 CSBQCU1-002 CSBQCU1-003	B GY-B GY-B GY-C GY-C GY-C GY-A GY-A GY-A	629168.77 628530.10 628555.19 628865.19 628835.51 628832.16 628564.61 628552.80 628561.98 628551.58	9606038.20 9606353.27 9606336.81 9605519.64 9605533.39 9605532.92 9606364.46 9606332.35 9606365.72	904.26 912.15 912.18 854.70 856.63 856.91 1049.49 1050.46 1049.34	628712.25 628599.15 628542.18 628846.18 628833.43 628825.05 628555.37 628548.87 628554.31	9606253.4 9606318.0 9606318.2 9605528.5 9605557.2 9605525.5 9606328.2 9606328.2 9606324.1 9606367.5	44 90 08 91 23 91 57 85 20 85 92 85 92 104 18 104 91 104 99 104
		CSADRI-002 CSADRI-003 CSADRI-004 CSBARR-001 CSBARR-004 CSBARR-005 CSBQCU1-001 CSBQCU1-002 CSBQCU1-003 CSBQCU1-005	B GY-B GY-B GY-C GY-C GY-C GY-A GY-A GY-A GY-A	629168.77 628530.10 628555.19 628865.19 628835.51 628832.16 628564.61 628552.80 628561.98 628551.58 628554.56	9606038.20 9606353.27 9606336.81 9605519.64 9605533.39 9605532.92 9606364.46 9606332.35 9606365.72 9606368.66	904.26 912.15 912.18 854.70 856.63 856.91 1049.49 1050.46 1049.34 1049.47 1049.49	628712.25 628599.15 628542.18 628846.18 628833.43 628825.05 628555.37 628548.87 628554.31 628545.99	9606253.4 9606318.0 9606318.2 9605528.5 9605557.2 9605525.5 9606328.2 9606324.1 9606367.5 9606367.5	44 90 08 91 23 91 57 85 20 85 22 85 29 104 18 104 91 104 93 104 51 104
		CSADRI-002 CSADRI-003 CSADRI-004 CSBARR-001 CSBARR-004 CSBARR-005 CSBQCU1-001 CSBQCU1-002 CSBQCU1-003 CSBQCU1-005 CSBQCU1-006 CSBQLB1-001	B GY-B GY-B GY-C GY-C GY-C GY-A GY-A GY-A GY-A GY-A	629168.77 628530.10 628555.19 628865.19 628835.51 628832.16 628564.61 628552.80 628561.98 628551.58 628551.58 628544.56 628398.56	9606038.20 9606353.27 9606336.81 9605519.64 9605533.39 9605532.92 9606364.46 9606332.35 9606365.72 9606368.66 9606363.81	904.26 912.15 912.18 854.70 856.63 856.91 1049.49 1050.46 1049.34 1049.47 1049.49 935.10	628712.25 628599.15 628542.18 628846.18 628833.43 628825.05 628555.37 628548.87 628554.31 628545.99 628534.71	9606253.4 9606318.2 9605528.5 9605557.2 9605525.5 9606328.2 9606324.3 9606367.5 9606367.5 9606365.5 9606365.5	44 90 08 91 23 91 57 85 20 85 22 85 29 104 91 104 99 104 51 104 98 93
		CSADRI-002 CSADRI-003 CSADRI-004 CSBARR-001 CSBARR-004 CSBARR-005 CSBQCU1-001 CSBQCU1-002 CSBQCU1-003 CSBQCU1-005 CSBQCU1-006 CSBQLB1-001 CSBQLB1-003	B GY-B GY-B GY-C GY-C GY-C GY-A GY-A GY-A GY-A GY-A GY-A GY-A	629168.77 628530.10 628555.19 628865.19 628835.51 628832.16 628564.61 628552.80 628561.98 628551.58 628551.58 628544.56 628398.56 628411.32	9606038.20 9606353.27 9606336.81 9605519.64 9605532.92 9606364.46 9606332.35 9606365.72 9606368.66 9606363.81 9606395.53 9606375.14	904.26 912.15 912.18 854.70 856.63 856.91 1049.49 1050.46 1049.34 1049.47 1049.49 935.10 936.55	628712.25 628599.15 628542.18 628846.18 628833.43 628825.05 628555.37 628548.87 628554.31 628545.99 628534.71 628409.97 628427.64	9606253.4 9606318.2 9605528.5 9605525.5 9606328.2 9606328.2 9606324.2 9606365.5 9606365.5 9606365.5 9606378.0 9606332.5	44 90 08 91 23 91 57 85 20 85 92 85 92 85 92 104 91 104 92 104 93 104 55 93
		CSADRI-002 CSADRI-003 CSADRI-004 CSBARR-001 CSBARR-004 CSBARR-005 CSBQCU1-001 CSBQCU1-001 CSBQCU1-003 CSBQCU1-005 CSBQCU1-006 CSBQLB1-001 CSBQLB1-004	B GY-B GY-B GY-C GY-C GY-C GY-A GY-A GY-A GY-A GY-A GY-A GY-A GY-A	629168.77 628530.10 628555.19 628865.19 628835.51 628564.61 628552.80 628561.98 628551.58 628544.56 628398.56 628411.32 628408.71	9606038.20 9606353.27 9606336.81 9605519.64 9605533.39 9605532.92 9606364.46 9606332.35 9606365.72 9606365.72 9606368.66 9606395.53 9606375.14 9606350.56	904.26 912.15 912.18 854.70 856.63 856.91 1049.49 1050.46 1049.34 1049.47 1049.49 935.10 936.55 937.75	628712.25 628599.15 628542.18 628846.18 628833.43 628825.05 628555.37 628548.87 628554.31 628545.99 628534.71 628409.97 628427.64 628408.64	9606253.4 9606318.0 9606318.2 9605528.5 9605525.5 9606328.2 9606324.1 9606367.6 9606365.5 9606378.0 9606378.0 9606332.5	44 90 08 91 23 91 57 85 20 85 92 85 92 104 91 104 99 104 51 104 55 93 95 93
		CSADRI-002 CSADRI-003 CSADRI-004 CSBARR-001 CSBARR-004 CSBARR-005 CSBQCU1-001 CSBQCU1-002 CSBQCU1-003 CSBQCU1-005 CSBQCU1-006 CSBQLB1-001 CSBQLB1-003	B GY-B GY-B GY-C GY-C GY-C GY-A GY-A GY-A GY-A GY-A GY-A GY-A	629168.77 628530.10 628555.19 628865.19 628835.51 628832.16 628564.61 628552.80 628561.98 628551.58 628544.56 628398.56 628411.32 628408.71 628409.45	9606038.20 9606353.27 9606336.81 9605519.64 9605532.92 9606364.46 9606332.35 9606365.72 9606368.66 9606363.81 9606395.53 9606375.14	904.26 912.15 912.18 854.70 856.63 856.91 1049.49 1050.46 1049.34 1049.47 1049.49 935.10 936.55	628712.25 628599.15 628542.18 628846.18 628833.43 628825.05 628555.37 628548.87 628554.31 628545.99 628534.71 628409.97 628427.64	9606253.4 9606318.2 9605528.5 9605525.5 9606328.2 9606328.2 9606324.2 9606365.5 9606365.5 9606365.5 9606378.0 9606332.5	44 90 08 91 23 91 57 85 20 85 92 85 92 104 18 104 91 104 51 104 53 93 55 93 55 93

Issued Capital 1,261.1m shares 10m options . 44.2m perf rights Australian Registered Office Level 1

1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

T: +61 8 6380 9235 E: admin@challengerex.com

Contact

Criteria	JORC Code explanation	Commentary							
		CSBQLB3-001	GY-A	628313.38	9606349.71	938.80	628332.64	9606305.96	940.42
		CSBQLB3-002	GY-A	628331.99	9606305.98	938.32	628330.44	9606303.38	938.40
		CSBQLB3-003	GY-A	628330.98	9606301.14	938.32	628327.57	9606286.57	938.73
		CSBQLB3-004	GY-A	628337.64	9606329.71	938.05	628331.74	9606329.82	938.19
		CSBQLB4-001	GY-A	628422.11	9606586.27	870.15	628451.59	9606526.64	871.71
		CSBQLB4-002	GY-A	628451.08	9606524.96	873.05	628451.39	9606501.29	873.54
		CSBQLB5-001	GY-A	628428.63	9606546.08	881.50	628433.71	9606519.76	881.69
		CSBQLB5-002	GY-A	628436.61	9606517.10	883.53	628452.93	9606508.75	883.98
		CSBQLB5-003	GY-A	628455.26	9606508.65	885.18	628455.20	9606505.13	885.27
		CSBQLB6-001	GY-A	628447.83	9606540.96	896.64	628458.78	9606525.44	896.72
		CSBQLB6-002	GY-A	628465.44	9606521.09	896.71	628466.74	9606510.56	895.83
		CSBQLB7-001	GY-A	628386.49	9606612.65	846.41	628458.70	9606503.47	849.30
		CSBQNW1-001	GY-A	628399.20	9606316.75	988.08	628404.71	9606303.52	989.23
		CSBQNW1-002	GY-A	628403.16	9606310.69	990.37	628410.63	9606314.06	995.21
		CSBQNW2-001	GY-A	628428.50	9606259.40	1010.13	628435.75	9606258.32	1010.87
		CSBQNW2-002	GY-A	628433.37	9606249.96	1002.97	628440.28	9606273.91	1003.40
		CSBQNW3-001	GY-A	628414.95	9606318.02	1002.80	628424.22	9606318.24	1003.12
		CSBQSU1-001	GY-A	628565.84	9606365.44	1049.16	628582.34	9606368.81	1047.18
		CSBQSU2-001	GY-A	628408.04	9606355.42	975.92	628396.24	9606327.32	980.84
		CSBQSU2-002	GY-A	628396.98	9606325.26	982.04	628397.54	9606318.52	985.20
		CSBQSU3-001	GY-A	628560.54	9606332.95	1083.39	628556.62	9606332.24	1079.28
		CSBQSU4-001	GY-A	628558.11	9606345.78	1074.65	628541.63	9606343.34	1077.32
		CSBQSU5-001	GY-A	628541.03	9606341.08	1079.20	628538.01	9606338.92	1080.95
		CSBQSU6-001	GY-A	628534.31	9606336.20	1081.68	628527.14	9606329.21	1076.71
		CSBQSU7-001	GY-A	628358.48	9606388.92	929.74	628381.26	9606387.28	932.54
		CSBQSU7-002	GY-A	628383.26	9606387.28	932.55	628387.70	9606390.76	933.46
		CSCARE1-001	GY-B	628956.41	9606217.05	1006.45	628940.83	9606237.35	1006.57
		CSCARE1-002	GY-B	628938.74	9606238.51	1006.49	628939.27	9606259.47	1006.59
		CSCARE1-003	GY-B	628939.49	9606261.21	1006.62	628915.78	9606345.10	1006.95
		CSCARE1-004	GY-B	628914.42	9606346.93	1007.88	628910.31	9606351.80	1007.88
		CSCARE1-005	GY-B	628916.02	9606346.93	1007.18	628915.79	9606385.70	1007.39
		CSCAYA1-001	GY-C	628983.70	9605271.31	734.41	629024.77	9605325.90	737.75
		CSCAYA1-002	GY-C	629027.04	9605328.41	737.28	629005.63	9605347.74	737.24
		CSCAYA1-003	GY-C	629003.19	9605348.90	737.42	628971.71	9605386.76	738.51
		CSCHON-001	GY-C	628931.52	9605592.50	843.93	628922.57	9605615.45	844.66

Issued Capital 1,261.1m shares 10m options . 44.2m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Contact

T: +61 8 6380 9235

Criteria	JORC Code explanation	Commentary							
		CSCHOR-001	GY-C	628971.99	9605585.96	808.18	628967.66	9605599.28	808.18
		CSCHOR-002	GY-C	628963.93	9605607.64	808.78	628957.03	9605640.25	809.01
		CSCHOR-003	GY-C	628965.92	9605595.69	808.30	628954.73	9605585.23	809.85
		CSDURA-001	GY-A	628227.90	9606366.15	870.94	628233.65	9606367.67	871.03
		CSDURA-002	GY-A	628237.73	9606367.79	871.76	628278.47	9606372.36	872.70
		CSDURA-003	GY-A	628280.86	9606371.10	872.76	628305.14	9606377.74	873.18
		CSDURA-004	GY-A	628305.96	9606377.17	875.03	628306.13	9606377.16	876.52
		CSDURA-005	GY-A	628305.70	9606375.49	875.08	628305.91	9606375.48	876.26
		CSDURA-006	GY-A	628304.83	9606371.55	874.71	628298.41	9606328.41	875.37
		CSDURA-007	GY-A	628300.06	9606326.34	876.77	628296.81	9606306.71	877.07
		CSDURA-008	GY-A	628305.06	9606379.60	875.23	628305.17	9606379.54	876.47
		CSDURA-009	GY-A	628306.80	9606381.81	875.00	628306.92	9606381.75	876.09
		CSDURA-010	GY-A	628307.66	9606383.85	875.60	628307.65	9606383.78	876.82
		CSDURA-021	GY-A	628306.04	9606409.45	875.49	628281.99	9606414.99	875.8
		CSFIGR1-001	GY-A	628568.54	9606315.41	1065.39	628568.60	9606329.94	1066.7
		CSFIGR2-001	GY-A	628533.86	9606298.18	1047.65	628547.66	9606319.06	1049.8
		CSFIGR2-002	GY-A	628546.11	9606315.43	1051.72	628543.82	9606317.34	1053.6
		CSL10085-001	GY-A	628924.38	9606395.12	128.14	628918.80	9606398.91	126.6
		CSL10085-003	GY-A	628910.03	9606407.35	119.40	628907.59	9606408.57	117.9
		CSL10085-005	GY-A	628786.96	9606621.50	1083.67	628786.16	9606622.66	1080.
		CSL10085-MN1	GY-A	628823.95	9606562.44	1129.24	628801.53	9606546.52	1130.
		CSL9535-001	GY-A	628388.50	9606197.56	966.61	628419.90	9606167.91	993.7
		CSL9535-002	GY-A	628421.91	9606168.51	994.28	628436.20	9606159.54	1005.
		CSL9535-003	GY-A	628435.86	9606152.93	1008.82	628441.86	9606146.64	1015.
		CSL9535-004	GY-A	628444.51	9606145.38	1015.92	628448.52	9606136.99	1023.
		CSL9535-005	GY-A	628449.94	9606134.61	1025.30	628454.36	9606125.46	1033.
		CSL9535-MN1	GY-A	628401.26	9606190.25	972.52	628466.82	9606150.77	975.6
		CSL9635-001	GY-A	628620.51	9606012.31	1104.81	628615.82	9606019.52	1115.
		CSL9635-002	GY-A	628526.97	9606151.03	1079.13	628534.14	9606159.13	1079.
		CSL9635-004	GY-A	628525.73	9606232.56	1037.22	628523.80	9606241.00	1029.
		CSL9735-001	GY-A	628705.59	9606073.41	1091.45	628694.25	9606079.04	1102.
		CSL9735-003	GY-A	628622.83	9606221.70	1101.10	628624.15	9606219.05	1102.
		CSL9735-004	GY-A	628624.92	9606215.99	1102.80	628627.37	9606201.02	1109.
		CSL9870-001	GY-A	628593.17	9606538.97	1008.91	628626.52	9606425.27	1005.5
		CSL9870-002	GY-A	628623.03	9606476.82	1015.56	628632.96	9606461.94	1017.5

Issued Capital 1,261.1m shares 10m options . 44.2m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		CSL9870-004	GY-A	628635.18	9606459.58	1024.76	628638.45	9606459.48	1024.52
		CSL9870-005	GY-A	628638.91	9606456.92	1024.96	628642.80	9606446.01	1025.96
		CSL9870-006	GY-A	628643.94	9606445.83	1028.21	628650.33	9606433.99	1031.25
		CSL9870-007	GY-A	628653.72	9606431.36	1032.67	628657.39	9606408.96	1052.20
		CSL9870-008	GY-A	628656.18	9606407.94	1054.04	628657.81	9606401.96	1061.52
		CSL9870-009	GY-A	628659.13	9606397.48	1067.50	628660.39	9606395.61	1070.62
		CSL9870-010	GY-A	628662.78	9606394.96	1073.58	628663.53	9606390.03	1078.41
		CSL9870-012	GY-A	628673.93	9606383.83	1095.35	628680.17	9606379.95	1104.49
		CSL9870-014	GY-A	628683.02	9606377.25	1110.43	628692.34	9606371.68	1125.05
		CSL9870-016	GY-A	628700.52	9606372.66	1131.44	628703.77	9606366.06	1142.13
		CSL9870-017	GY-A	628706.01	9606363.64	1146.60	628711.57	9606361.22	1154.59
		CSL9870-018	GY-A	628696.28	9606344.63	1150.57	628701.30	9606322.31	1172.39
		CSL9970-001	GY-A	628685.08	9606600.30	1031.67	628696.64	9606576.19	1054.35
		CSL9970-002	GY-A	628698.96	9606572.06	1059.20	628700.26	9606569.75	1061.64
		CSL9970-003	GY-A	628702.13	9606565.81	1066.98	628705.71	9606562.16	1072.86
		CSL9970-004	GY-A	628707.62	9606561.27	1075.29	628737.76	9606561.59	1094.24
		CSL9970-005	GY-A	628738.79	9606560.57	1096.01	628741.18	9606547.27	1110.06
		CSL9970-008	GY-A	628729.96	9606504.43	1144.07	628737.17	9606494.79	1149.86
		CSL9970-009	GY-A	628750.90	9606478.28	1157.94	628755.74	9606471.35	1164.72
		CSSALI-001	GY-A	629670.78	9607005.76	869.65	629675.67	9606990.81	870.19
		CSSALI-003	GY-A	629679.90	9606979.99	870.86	629681.97	9606951.09	872.71
		CSSALI-004	GY-A	629679.77	9606952.89	872.27	629676.74	9606948.38	872.56
		CSSALI-005	GY-A	629673.30	9606950.55	872.35	629655.94	9606941.79	872.52
		CSSALI-007	GY-A	629651.46	9606938.95	872.57	629550.37	9606896.35	874.89
		CSTINO-001	GY-A	629119.86	9606777.84	946.21	629138.76	9606671.07	948.99
		CSTINO-002	GY-A	629136.64	9606668.16	949.01	629153.42	9606643.44	949.40
		CSTINO-004	GY-A	629155.57	9606640.24	949.47	629164.64	9606625.11	949.68
		CSTINO-005	GY-A	629135.08	9606670.05	948.29	629044.73	9606523.90	949.88
		CSINDI1-001	GY-A	628196.08	9606683.90	735.22	628239.76	9606704.20	736.09
		CSINDI1-003	GY-A	628243.79	9606704.06	736.22	628341.62	9606746.58	737.82
		CSINDI1-004	GY-A	628344.90	9606749.17	737.82	628361.73	9606763.00	737.95
		CSINDI1-005	GY-A	628364.80	9606763.28	737.91	628385.38	9606769.00	738.00
		CSINDI1-006	GY-A	628389.28	9606769.33	737.99	628598.03	9606692.87	741.47
		CSINDI1-007	GY-A	628599.47	9606691.89	741.22	628671.25	9606673.90	742.44
		CSINDI2-001	GY-A	628226.78	9606632.59	744.27	628235.83	9606625.31	744.32

Issued Capital 1,261.1m shares 10m options . 44.2m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	C	ommentary								
		C	SINDI2-003	GY-A	628235.38	9606620.79	744.29	628225.5	7 9606613	.70	744.4
		CE	L: El Guayabo F	Project (Colorado	V Concession),	Camp #1, Phas	e #1 Drill Hol	e Informatio	n		
		Н	ole ID	East (m)	North (m)	Elevation	Azimuth (°)	Dip (°)	Final depth	Driller	
		С	VDD-22-001	626891.522	9609246.373	199.393	300	-60	533.20	CEL	
		C	VDD-22-002	627198.352	9609719.449	198.970	120	-60	575.00	CEL	
		C	VDD-22-003	626894.633	9609244.452	199.514	120	-60	512.40	CEL	
		C	VDD-22-004	627209.772	9609873.677	203.018	120	-60	658.95	CEL	
		C	VDD-22-005	626893.119	9609246.715	199.383	030	-65	607.15	CEL	
		C	VDD-22-006	627698.461	9609900.275	180.879	300	-60	600.70	CEL	
		C	VDD-22-007	626419.745	9609344.874	264.563	120	-60	808.00	CEL	
		C	VDD-22-008	627444.177	9610249.652	191.069	120	-60	535.70	CEL	
		C	VDD-22-009	626664.672	9609635.445	179.594	120	-60	890.80	CEL	
		C	VDD-22-010	626436.552	9609542.080	244.110	120	-60	890.20	CEL	
		C	VDD-22-011	628295.444	9610306.768	156.815	300	-60	672.50	CEL	
		C	VDD-22-012	627329.632	9607382.048	524.050	315	-60	756.70	CEL	
		C	VDD-22-013	626906.497	9609603.539	174.956	120	-60	752.45	CEL	
		C	VDD-22-014	627294.523	9607344.459	518.531	115	-60	863.40	CEL	
		C	VDD-22-015	625799.563	9605232.572	428.500	280	-60	758.35	CEL	
		C	VDD-22-016	627053.570	9607990.935	377.253	140	-60	558.45	CEL	
		C	VDD-22-017	625582.100	9605073.535	384.291	150	-60	746.05	CEL	
Data aggregation	 In reporting Exploration Results, v averaging techniques, maximum of 		-	ting has been use t of grade of 0.2 g		-	·		ents		
methods	minimum grade truncations (eg c	•		tercepts have bee				-		aggregati	on A
	grades) and cut-off grades are use			f 0.5 g/t Au Equiv	•				•		
	and should be stated.	,		iture of the mine			-	-		-	
	 Where aggregate intercepts incor 	norate short		does not have a			-		-	-	
	lengths of high grade results and		-					1 13011 @ 2.	o g.t Au III Hold	- 001-02	•
	of low grade results, the procedur			he intercept com			-				
	such aggregation should be stated			he intercept inclu	-		5 g/t Au				
	typical examples of such aggregation	•		d includes gold g		0.					
	shown in detail.	ions should be		es a gold price of		a silver price of	USD 22 /oz, a	copper price	e of USD 9,650	/t, and a	
		arting of	•	n price of US\$40,5							
	- The assumptions used for any rep	•	-	recovery factors	-						-
	metal equivalent values should be	clearly	factors have	been applied in c	alculating the A	uEq at this early	/ stage of the	Project, hen	ce the formula	for calcu	latin
	stated.		the Au Eq is:	Au (g/t) + (Ag (g/	t) x 22/1780) + (1.68604 x Cu (%	6) + (7.07612	x Mo (%)).			
enger Gold Limited 23 591 382 EL	1,261.1m sharesLev10m options120	s tralian Registered Offic el 1 15 Hay Street st Perth WA 6005	Kris Knau Sergio Ro	s Jer, MD and CEO Dtondo, Chairman Igado, Executive Direct		0 9235 hallengerex.com					
			Brett Ha	Quinn, Non-Exec Direct ckett, Non-Exec. Direct	or						

Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary
		• CEL confirms that it is the company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold
		Guayabo: A cut-off grade of 0.1 g/t Au was used to report the assays of re-samples core and channel samples from underground development with up to 10 metres of internal dilution below cut-off allowable for the reporting of significant intercepts, consistent with a large low-grade mineralized system. Intersections that use a different cut-off are indicated.
		Significant Historic intersections from El Guayabo drilling are shown below:

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Comn	nenta	ry										
		Drillhole		Minerali	sed Inte	Total	Gol	d	Ag	Cu	Au Equiv	Azimuth	Ind	TD
		(#)		From	То	(m)	(g/1)	(g/t)	(%)	(g/t)	(deg)	(deg)	(m)
		JDH-001	from	183	190.6	7.6 m	@ 0.	3 g/tAu	+	not assayed	n/a	280	-60	236.9
		JDH-002	from	7.6				4 g/tAu	1	not assayed	n/a	280	-45	257.5
		JD11-002	and	199	243		_	4 g/tAu		not assayed	n/a	200	-45	251.5
		JDH-003		35.95	71.6			5 g/tAu		-		280	-45	261
		JDH-005	from and	120.4			_	4 g/tAu		not assayed not assayed	n/a n/a	200	-45	201
			inc	146.81	224.08			5 g/tAu		not assayed	n/a			
		1011-004						-				200	-45	219
		JDH-004	from and	3.96 79.74	21.95 120.42		-	4g/tAu 4g/tAu		not assayed not assayed	n/a n/a	280	-45	219
			and	150.9	203.7		_	≄g/tAu 7g/tAu		not assayed	n/a			
				5.2								200	45	210.4
		JDH-005	from	5.2 169.7	81.4 208.5		_	4 g/tAu		not assayed	n/a	280	-45	210.4
			and				_	2 g/tAu		not assayed	n/a	45-		
		JDH-006	from	17.99	89.6			-		/t Ag + 0.10 % Cu	0.42	150	-45	302.7
			and	164.8			_			y/tAg + 0.40 % Cu	1.37			
			inc	227.8	281.09		-	-		y/t Ag + 0.62 % Cu		- 5 0		
		JDH-007	from	39.7	84.45					y/tAg + 0.04 %Cu		150	-75	105.8
		JDH-008	from	104.7	136.7					y/tAg + 0.13 %Cu		150	-60	352.7
			and		316.15		_			y/tAg + 0.21 % Cu				
			and	291.76	316.15	24.4 m	@ 0.	5 g/tAu	+ 9.2 g	y/tAg + 0.34 %Cu	1.13			
		JDH-009	from	10.3	122.03	111.7 m	@ 0.	7 g/t Au	+ 14.6 g	j/tAg + 0.58 % Cu	1.85	150	-45	256.7
			inc	34.6	91.54	56.9 m	@ 0.	2g/tAu	+ 19.1 g	y/tAg + 0.82 %Cu	1.80			
			and	201.4	205.4		_	-	-	y/tAg + 0.01 %Cu				
			and	255.1	eoh	1.5 m	@ 0.	7g/tAu	+ 1.5 g	y/tAg + 0.02 %Cu	0.75			
		JDH-10	from	1.5	50.9	49.4 m	@ 0.	5 g/tAu	+ 2.5 g	y/tAg + 0.09 %Cu	0.68	270	-45	221.6
			and	90.54	119			-	-	y/tAg + 0.10 %Cu				
			and	140	203	81.6 m	@ 0.	4g/tAu	+ 1.3 g	y/tAg + 0.07 %Cu	0.53			
		JDH-011	from	100.7	218	117.3 m	@ 0.	4 g/tAu	+ 4.6 g	y/tAg + 0.10 %Cu	0.62	270	-45	218.0
		JDH-012	from	12.2	53.96	41.8 m	@ 0.	6 g/tAu	+ 6.5 g	y/tAg + 0.02 %Cu	0.67	150	-60	124.1
		JDH-013	from	53.35	69.6					y/tAg + 0.01 % Cu		150	-60	239.3
			and	89.9	154.9					/tAg + 0.06 % Cu				20010
				114.32			_	-	-	/tAg + 0.10 % Cu				
		JDH-014	from	26.96	75.69					y/tAg + 0.10 % Cu		90	-60	239.4
		5011014	and	85.84						/tAg + 0.1 % Cu		50		255.1
			and	128.52	175.3		_	-		/tAg + 0.08 % Cu				
							_	-	-	y/tAg + 0.08 % Cu				
		<u> </u>								d drill core from		المحمام	ll hala	

Issued Capital 1,261.1m shares 10m options 44.2m perf rights

Level 1 1205 Hay Street

Australian Registered Office

ered Office

Level 1 Kr 1205 Hay Street Se West Perth WA 6005 Sc Fli

Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Piett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commenta	nry							
		Drill hole				Total	Au	Ag	Cu	Au Eq
		(#)		From	То	(m)	(g/t)	(g/t)	(%)	(g/t)
		GY-001	historical intercept	139	249.2	110.2m	0.4	1.1	0.06	0.5
			(re-assayed section)	141	177	36.0m	0.54	2.30	0.08	0.7
			(original assays)	1	(36.0m	0.56	1.51	0.08	0.7
			(re-assayed section)	205	236	31.0m	0.19	0.89	0.03	0.3
			(original assays)	1	(31.0m	0.21	0.13	0.03	0.3
		GY-002	historical intercept	9.7	166	156.3m	2.6	9.7	0.16	3.0
			(re-assayed section)	40	102	62.0m	5.22	21.33	0.25	5.9
			(original assays)	1	'	62.0m	4.83	19.96	0.23	5.5
			historical intercept	114	166	52.0m	1.3	3.3	0.18	1.6
			(re-assayed section)	114	171	57.0m	1.20	3.44	0.18	1.5
			(original assays)	1	(57.0m	1.24	3.53	0.17	1.6
		GY-005	historical intercept	12	162	150.0m	0.4	11.0	0.30	1.0
			(re-assayed section)	10	60	50.0m	0.45	19.23	0.33	1.2
			(original assays)	1	(50.0m	0.51	21.74	0.44	1.5
			(re-assayed section)	64	98	34.0m	0.10	5.25	0.16	0.4
			(original assays)	1	(34.0m	0.84	6.22	0.16	1.2
			(re-assayed section)	132	162	30.0m	0.10	6.35	0.33	0.7
			(original assays)	1	(30.0m	0.07	6.18	0.31	0.7
		GY-011	historical intercept	14	229	215.0m	0.2	9.6	0.36	0.9
			(re-assayed section)	14	126	112.0m	0.17	10.89	0.30	0.8
			(original assays)	1	(112.0m	0.18	11.73	0.36	0.9
			(re-assayed section)	166	206	40.0m	0.09	5.08	0.22	0.5
			(original assays)	1	(40.0m	0.09	4.90	0.22	0.5
			(re-assayed section)	218	231	13.0m	0.22	8.52	0.41	1.0
			(original assays)	1	1	13.0m	0.34	19.48	0.96	2.2
		GY-017	historical intercept	69	184	115.0m	0.5	2.1	0.03	0.5
			(re-assayed section)	94	129	35.0m	0.45	2.76	0.04	0.6
			(original assays)	'	(35.0m	0.30	4.01	0.03	0.4
			(re-assayed section)	206	258	52.0m	0.37	2.00	0.06	0.5
			(original assays)	1	1	52.0m	0.26	1.42	0.06	0.4
		JDH-006	historical intercept	17.99	89.6	71.6m	0.2	2.0	0.10	0.4
			(re-assayed section)	10.3	81.3	71.0m	0.18	1.38	0.03	0.2
			(original assays)	1	'	71.0m	0.20	1.59	0.07	0.3

Issued Capital 1,261.1m shares 10m options . 44.2m perf rights Australian Registered Office Level 1

Directors

1205 Hay Street West Perth WA 6005 Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commenta	ary							
			historical intercept	164.8	281	116.2m	0.6	8.9	0.40	1.4
			(re-assayed section)	150.6	281.1	130.5m	0.26	7.21	0.26	0.8
			(original assays)	('	130.5m	0.42	8.02	0.36	1.1
		JDH-009	historical intercept	10.3	122	111.7m	0.7	14.6	0.58	1.8
			(re-assayed section)	6.7	107.8	101.1m	0.21	13.80	0.36	1.0
			(original assays)	1	1	101.1m	0.22	15.08	0.59	1.4
		JDH-10	historical intercept	1.5	50.9	49.4m	0.5	2.5	0.09	0.7
			(re-assayed section)	15.2	50.9	35.7m	0.44	2.88	0.10	0.6
			(original assays)	1	'	35.7m	0.41	2.96	0.10	0.6
			historical intercept	140	203	81.6m	0.4	1.3	0.07	0.5
			(re-assayed section)	150.5	203.4	52.9m	0.36	1.34	0.07	0.5
			(original assays)	1	'	52.9m	0.39	1.24	0.06	0.5
		JDH-012	historical intercept	12.2	53.96	41.8m	0.6	6.5	0.02	0.7
			(re-assayed section)	18.3	54	35.7m	0.68	7.62	0.02	0.8
			(original assays)	('	35.7m	0.69	7.36	0.02	0.8
		JDH-013	historical intercept	89.9	154.9	65.0m	1.4	2.8	0.06	1.5
			(re-assayed section)	112.3	155	42.7m	2.11	2.84	0.05	2.2
			(original assays)	((42.7m	2.00	3.70	0.08	2.2
		JDH-014	historical intercept	26.96	75.69	48.7m	0.4	5.2	0.10	0.6
			(re-assayed section)	27	61.5	34.5m	0.64	5.99	0.13	0.9
			(original assays)	((34.5m	0.52	6.25	0.13	0.8
			historical intercept	128.52	175.3	46.8m	0.46	3.3	0.08	0.6
			(re-assayed section)	140.7	167.2	26.5m	0.26	2.24	0.07	0.4
			(original assays)	('	26.5m	0.65	2.91	0.08	0.8

Colorado V:

A cut-off grade of 0.1 g/t Au was used to report the assays of re-samples core and channel samples from underground development with up to 10 metres of internal dilution below cut-off allowable for the reporting of significant intercepts, consistent with a large low-grade mineralized system. Intersections that use a different cut-off are indicated.

Historic: Significant intersections from Colorado V drill hole results from re-sampling of available core:

Challenger Gold Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,261.1m shares 10m options 44.2m perf rights

Level 1 West Perth WA 6005

Australian Registered Office 1205 Hay Street

Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commenta	ry							
		Hole_id	From	То	Interval	Au (g/t)	Ag (g/t)	Cu (ppm)	Mo (ppm)	Comment
			(m)	(m)	(m)					
		ZK0-1	9.4	37.5	28.1	0.4	1.0			
		and	66.5	89.5	23.0	0.9	4.7			
		and	105.7	129.7	24.0	0.3	1.0			
		and	167.5	214.0	46.5	0.4	7.1			
		ZK1-3	46.0	103.7	57.7	0.5	1.9			
		inc	56.0	85.7	29.7	0.8	3.1			
		from	127.0	163.0	36.0	0.5	3.5			
		and	290.5	421.0	130.5	0.5	3.1			
		inc	302.5	380.5	78.0	0.7	3.5			
		ZK1-5	211.4	355.0	145.6	1.5	1.7			
		inc	253.0	340.0	87.0	2.1	1.9			
		ZK0-2	13.3	108.2	94.9	0.3	1.7			
		inc	75.7	108.2	32.5	0.4	2.6			
		and	172.7	193.1	20.4	0.3	2.1			
		and	225.0	376.4	151.4	0.9	3.8			
		inc	227.0	361.0	134.0	1.0	4.1			
		inc	227.0	290.0	63.0	1.6	5.1			
		ZK3-4	26	38	12	0.3	1.5	513	5	
		and	50	114	64	0.2	1.5	549	5	
		inc	86	88	2	1.5	1.4	458	3	1 g/t Au cut off
		and	180	250	70	0.2	1.6	777	3	
		ZK3-1	49.5	112.5	63	0.1	1.7	654	5	
		inc	94.5	96	1.5	1.5	1.4	3126	7	1 g/t Au cut off
		and	94.5	174	79.5	0.1	2	662	4	
		inc	171	172.5	1.5	1.4	2.6	771	7	1 g/t Au cut off
		SAZKO-1	31.2	90.8	59.6	0.2	1.4	392	3	
		and	131.5	179.5	48	0.1	4.3	824	6	
		and	229.8	292.8	63	0.2	1	325	8	
		and	319	490.8	171.8	0.2	1.5	616	12	
		inc	352	446.5	94.5	0.3	2.4	996	15	1 g/t Au cut off
		SAK2-1	66.5	275	208.5	0.3	1.5	626	5	
		inc	122	185	63	0.6	2.1	825	3	1 g/t Au cut off
		and	225.5	227	1.5	1.6	1.4	638	2	1 g/t Au cut off

Issued Capital 1,261.1m shares 10m options . 44.2m perf rights Australian Registered Office Level 1

1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Criteria	JORC Code explanation	Commenta	ary							
		and	288.5	330.5	42	0.2	2	454	1	
		inc	288.5	291.5	3	1.3	5.6	1136	1	1 g/t Au cut off
		SAZK0-2	0	80.7	80.7	0.4	1.9	478	3	
		inc	30.7	51.2	20.5	1	2.5	460	5	1 g/t Au cut off
		and	136	148	12	0.6	0.4	61	14	
		inc	137.5	140.5	3	1.4	0.3	10	4	1 g/t Au cut off
		and	200.5	403.8	203.3	0.3	1.3	588	15	Hole ends in mineralisation
		inc	293.5	399.3	105.8	0.5	1.3	635	16	
		inc	214	215.5	1.5	1.8	2.1	681	12	1 g/t Au cut off
		inc	344.5	399.3	54.8	0.7	1.5	767	12	
		inc	361.8	366.3	4.5	5.5	0.8	502	61	1 g/t Au cut off
		and	397.8	399.3	1.5	1.3	2.3	770	2	1 g/t Au cut off
		ZK1-13	46.2	73.2	27	0.1	0.8	306	1	
		and	140	141.5	1.5	1.9	0.7	236	1	1 g/t Au cut off
		and	161	196	35	0.1	1.4	391	2	
		ZK0-5	6.1	19.8	13.7	0.2	1.3	313	10	
			46.3	130.1	83.8	0.5	1.2	356	7	
		inc	67	118	51	0.7	1.4	409	5	0.5 g/t Au cut off
		inc	75.7	76.8	1.1	1.2	1.4	483	2	1 g/t Au cut off
		and	80.7	81.7	1	1.8	2.2	549	4	1 g/t Au cut off
		and	93.7	94.7	1	13.9	3.4	354	7	1 g/t Au cut off
		and	146.5	296.5	150	0.2	1	310	3	
		and	370	371.5	1.5	0.9	5.2	1812	3	
		and	414.3	415.8	1.5	1.2	0.3	127	1	
		and	560.5	562	1.5	2.3	0.6	189	2	
		and	596	598.2	2.2	1.7	2.1	391	4	
		and	607	608.5	1.5	2	0.8	190	2	
		ZK18-1	NSI							
		ZK0-4	3.70	458.00	454.30*	0.20	1.3	0.04	5.9	
		inc	42.60	154.25	111.65	0.39	1.9	0.05	7.6	0.5 g/t AuEq cut off
		inc	69.70	97.20	27.50	0.66	1.7	0.05	8.6	1.0 g/t AuEq cut off
		ZK10-1	25.02	151.00	125.98	0.16	1.1	0.06	17.9	0.1 g/t AuEq cut off
		and	309.00	326.00	17.00	0.16	0.91	0.07	6.1	0.1 g/t AuEq cut off
		and	354.02	451.00	96.98*	0.17	1.2	0.06	15.8	

Issued Capital 1,261.1m shares 10m options . 44.2m perf rights Australian Registered Office Level 1

1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Criteria JORC Code explanation

Commentary

Comment	ary							
inc	435.02	451.00	15.98*	0.32	1.8	0.07	2.6	
ZK16-2	19.00	267.31	248.31	0.33	2.7	0.07	2.6	0.1 g/t AuEq cut off
inc	140.00	254.00	114.00	0.53	2.9	0.09	3.3	0.5 g/t AuEq cut off
inc	224.00	254.00	30.00	0.85	3.6	0.12	3.4	1.0 g/t AuEq cut off

* Mineralisation to end of hole

Historic: Significant intersections from Colorado V channel sample results from underground exposure

Channel_id	From (m)	Interval	AuEq (g/t)	Au (g/t)	Ag (g/t)	Cu (%)	Mo (ppm)	Comment
		(m)						
Main Adit	0.0	264.0	0.42	0.30	2.1	0.05	9.4	0.1 g/t AuEq cut off
inc	0.0	150.0	0.60	0.46	2.4	0.07	9.8	0.5 g/t AuEq cut off
inc	0.0	112.0	0.71	0.55	2.7	0.08	9.3	1 g/t AuEq cut off
and	276.0	32.0	0.29	0.21	1.4	0.04	5.1	0.1 g/t AuEq cut off
Main Adit	20.0	39.1	0.30	0.28	2.3	0.03	4.5	0.1 g/t AuEq cut off
(west drive)								
and	74.0	56.0	0.69	0.64	1.8	0.01	2.8	0.5 g/t AuEq cut off
inc	84.0	46.0	0.81	0.76	2.1	0.01	3.0	1.0 g/t AuEq cut off

CEL: Guayabo and Colorado V Concessions_Camp 1, Phase #1 & Phase #2 Drilling Intercepts:

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

A cut-off grade of 0.1 g/t Au was used to report the assays of core samples with up to 10 metres of internal dilution below cut-off allowable for the reporting of significant intercepts, consistent with a large low-grade mineralized system. Intersections that use a different cut-off are indicated (e.g. 0.2g/t Au Eq, 0.5g/t AuEq, 1.0g/t AuEq, 10.0g/t AuEq).

CEL: Significant intersections from El Guayabo Project (Guayabo Concession)_Camp #1, Phase #1 Drilling completed

Drill Hole (#)	From (m)	То (m)	Interval (m)	Gold (g/t)	Ag (g/t)	Cu (%)	Mo (ppm)	AuEq (g/t)	Comments	Total intercept (gram metres)
GYDD-									0.1 g/t cut-off	
21-001	16.2	800.5	784.3	0.2	1.6	0.1	12.0	0.4	0.1 6/ 1 641 611	282.4
inc	167.5	548.0	380.5	0.3	2.0	0.1	18.4	0.5	1.0 g/t cut-off	178.8
inc	359.5	548.0	188.5	0.4	2.4	0.1	29.5	0.6	1.0 g/t cut-off	115.0
inc	403.0	431.0	28.0	0.5	6.9	0.2	104.4	1.0	1.0 g/t cut-off	26.6
inc	403.0	424.0	21.0	0.8	3.0	0.2	138.9	1.1	1.0 g/t cut-off	22.9
and	468.5	498.5	30.0	0.8	2.6	0.2	24.8	1.1	1.0 g/t cut-off	31.8
GYDD-	85	131.5	46.5	0.32	3.99	0.04	5.72	0.4	0.1 g/t out off	
21-002	65	151.5	40.5	0.52	5.99	0.04	5.72	0.4	0.1 g/t cut-off	20.0
incl.	112	114.3	2.3	1.33	33.17	0.12	5.1	2.0	1.0 g/t cut-off	4.5

Challenger Gold Limited ACN 123 591 382 ASX: CEL Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Directors

Criteria	JORC Code explanation	Com	mentary									
		incl.	129.75	131.5	1.75	2.05	7.36	0.01	1.29	2.2	1.0 g/t cut-off	3.8
		and	279.45	306.5	27.05	1.49	0.82	0.02	2.21	1.5	0.1 g/t cut-off	41.4
		incl.	305	306.5	1.5	10.16	1.89	0.03	3.21	19.2	10.0 g/t cut-	
		inci.	305	300.5	1.5	19.16	1.89	0.03	3.21	19.2	off	28.8
		and	378.5	392	13.5	0.44	0.21	0.01	1.45	0.5	0.1 g/t cut-off	6.2
		and	447.9	448.8	0.9	0.74	4.85	0.06	1.92	0.9	0.1 g/t cut-off	0.8
		and	499.8	557.8	58	0.14	0.3	0.01	1.53	0.2	0.1 g/t cut-off	9.3
		incl.	547.8	554.8	7	0.39	0.21	0.01	1.74	0.4	0.5 g/t cut-off	2.9
		incl.	554.1	554.8	0.7	1.06	0.2	0.01	1.08	1.1	1.0 g/t cut-off	0.8
		GYDI									0.1 g/t cut-off	
		21-00		191.06	119.2	0.4	0.8	0.0	2.2	0.5		53.9
		inc	76.35	153.56	77.2	0.5	0.5	0.0	1.1	0.6	1.0 g/t cut-off	45.6
		inc	76.35	102.56	26.2	1.1	0.9	0.0	1.7	1.1	1.0 g/t cut-off	29.3
		inc	101.80	102.56	0.8	20.6	4.9	0.0	0.6	20.7	10.0 g/t cut	15.7
		and	356.50 361.00	371.50 362.50	15.0 1.5	0.3 1.0	0.4 0.5	0.0 0.0	5.0 3.9	0.4 1.1	0.1 g/t cut-off 1.0 g/t cut-off	5.3 1.6
		inc and	575.80	597.20	1.5 21.4		0.5 2.6	0.0	3.9 57.7	0.3	0.1 g/t cut-off	6.7
		and	662.20	723.15	21.4 61.0	0.1 0.1	2.6 0.9	0.1	24.5	0.3	0.1 g/t cut-off	12.3
		GYDI		723.15	01.0	0.1	0.9	0.0	24.J	0.2	0.1 g/t cut-on	12.5
		21-00		375.75	338.7	0.2	1.0	0.0	6.5	0.3	0.1 g/t cut-off	84.7
		inc	223.46	375.75	152.3	0.2	1.3	0.0	7.3	0.3	0.1 g/t cut-off	50.0
		inc	348.75	375.75	27.0	0.5	1.8	0.0	7.3	0.6	1.0 g/t cut-off	16.9
		and	613.50	646.50	33.0	0.2	0.6	0.1	18.7	0.3	0.1 g/t cut-off	8.6
		inc	639.00	646.50	7.5	0.5	0.5	0.0	10.7	0.5	1.0 g/t cut-off	4.1
		GYDI			-				-			
		21-00		597.75	581.7	0.3	0.9	0.0	2.5	0.3	0.1 g/t cut-off	194.3
		inc	389.80	478.15	88.4	0.6	1.8	0.1	1.5	0.8	1.0 g/t cut-off	66.7
		inc	476.50	478.15	1.7	25.1	1.8	0.0	4.0	25.2	10.0 g/t cut	41.5
		and	567.34	597.75	30.4	1.4	0.9	0.0	5.1	1.5	1.0 g/t cut-off	45.6
		inc	592.59	597.75	5.2	7.1	2.0	0.0	3.9	7.2	1.0 g/t cut-off	36.9
		inc	596.15	597.15	1.0	22.0	3.9	0.0	10.9	22.2	10 g/t cut-off	22.2
		GYDI									0.1 g/t cut-off	
		21-00		313.10	309.8	0.2	6.3	0.2	3.0	0.7		207.1
		inc	17.40	276.50	259.1	0.2	7.3	0.2	3.3	0.8	0.1 g/t cut-off based on	195.9
		inc	74.40	276.50	202.1	0.3	6.5	0.3	3.6	0.8	lithology	165.7
		inc	74.40	107.40	33.0	0.3	15.5	0.5	3.7	1.3	1.0 g/t cut-off	43.4
		and	231.90	285.50	53.6	0.7	8.8	0.4	1.1	1.5	1.0 g/t cut-off	81.7
		GYDI 21-00)- 85 30	94.00	8.7	0.4	3.6	0.1	4.6	0.6	1.0 g/t cut-off	5.5
er Gold Limited 591 382	Issued Capital 1,261.1m shares	Australian Registered Office Level 1	Directors Kris Knauer,	MD and CEO		ontact : +61 8 6380 9	235					

Chal ACN 123 591 382 ASX: CEL

1,261.1m shares 10m options . 44.2m perf rights Level 1 1205 Hay Street West Perth WA 6005

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	(Commer	ntary									
			and	149.50	509.60	360.1	0.1	0.9	0.1	9.6	0.3	0.2 g/t cut off	95.1
			inc	253.50	265.50	12.0	0.4	2.0	0.1	10.3	0.5	1.0 g/t cut-off	6.1
		i	and	309.50	316.70	7.2	0.4	2.6	0.2	16.6	0.8	0.5 g/t cut-off	5.7
			and	450.20	493.20	43.0	0.4	1.0	0.1	21.3	0.6	0.5 g/t cut-off	24.1
			and	628.77	651.80	23.0	0.1	0.7	0.4	5.5	0.2	0.2 g/t cut-off	4.6
		i	inc	649.25	651.80	2.6	0.6	2.4	0.1	2.1	0.8	EOH	1.9
			GYDD- 21-008	5.30	263.10	257.8	0.8	7.9	0.3	1.5	1.4	0.1 g/t cut-off	361.0
		i	inc	184.10	263.10	79.0	2.4	17.5	0.7	1.6	3.8	1.0 g/t cut-off	298.6
		i	inc	209.40	263.10	53.7	3.5	23.9	0.9	1.7	5.3	5.0 g/t cut-off	285.7
		i	inc	248.80	255.60	6.8	16.9	50.1	1.9	1.6	20.6	10 g/t cut-off	104.2
			GYDD- 21-009	0.00	692.70	692.7	0.2	2.0	0.1	7.7	0.3	EOH	191.9
		i	inc	220.50	441.00	220.5	0.3	4.3	0.1	8.7	0.6	0.5 g/t cut-off	128.3
		i	inc	282.80	303.50	20.7	0.3	16.5	0.3	5.5	1.0	0.5 g/t cut-off	20.5
			inc	359.00	439.50	80.5	0.5	1.3	0.2	5.8	0.9	1.0 g/t cut-off	68.8
		i	inc	359.00	371.00	12.0	1.4	3.1	0.2	6.3	1.7	1.0 g/t cut-off	20.1
		i	and	398.00	439.50	41.5	0.5	7.2	0.2	5.7	1.0	1.0 g/t cut-off	41.0
		i	inc	421.20	439.50	18.3	0.9	14.4	0.5	5.3	1.8	1.0 g/t cut-off	33.4
			GYDD- 21-010	70.20	880.10	809.9	0.2	1.1	0.1	11.9	0.3	0.2 g/t cut-off	227.6
		i	inc	124.10	536.30	412.1	0.2	1.2	0.1	14.0	0.4	0.2 g/t cut-off	153.7
		i	inc	318.70	536.30	217.6	0.3	1.6	0.1	19.9	0.5	0.5 g/t cut-off	102.9
		i	inc	319.70	358.40	38.7	0.5	1.8	0.1	8.4	0.7	1.0 g/t cut-off	28.6
		i	and	468.10	536.30	68.2	0.4	2.2	0.1	31.8	0.7	1.0 g/t cut-off	45.4
			and	581.60	880.10	298.5	0.1	1.0	0.0	10.3	0.2	0.2 g/t cut-off	61.8
		i	inc	650.00	660.50	10.5	0.5	3.3	0.1	16.9	0.7	1.0 g/t cut-off	6.9
			GYDD- 21-011	3.00	310.90	307.9	0.5	2.4	0.0	13.6	0.6	0.2 g/t cut-off	191.5
		i	inc	13.00	21.00	8.0	0.7	12.4	0.1	2.0	0.9	0.5 g/t cut-off	7.3
			and	156.05	258.90	102.9	1.1	2.7	0.0	19.1	1.2	0.5 g/t cut-off	122.7
		i	inc	156.05	213.05	57.0	1.7	3.6	0.0	9.0	1.8	1.0 g/t cut-off	104.3
			GYDD- 21-012	2.00	226.84	224.8	0.3	2.4	0.0	2.7	0.4	0.2 g/t cut-off	83.6
		i	inc	2.00	44.50	42.5	0.6	2.3	0.0	1.9	0.7	1.0 g/t cut-off	31.1
		i	inc	2.00	6.50	4.5	1.8	0.8	0.0	1.8	1.9	1.0 g/t cut-off	8.4
		i	and	31.00	38.50	7.5	0.9	6.5	0.0	1.8	1.1	1.0 g/t cut-off	8.1
			and	339.94	365.60	25.7	0.1	2.2	0.0	2.3	0.2	0.2 g/t cut-off	4.6
			and	464.20	491.90	27.7	0.1	2.6	0.0	2.6	0.2	0.2 g/t cut-off	6.4
			and	669.60	741.60	72.0	0.3	0.8	0.0	3.2	0.3	0.2 g/t cut-off	23.1
nger Gold Limited 23 591 382 EL	Issued Capital 1,261.1m shares 10m options 44.2m perf rights	Australian Registered Off Level 1 1205 Hay Street West Perth WA 6005		Directors Kris Knauer, M Sergio Rotond Sonia Delgado	o, Chairman	rector	Contact T: +61 8 6380 9 E: admin@chal						

Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

riteria	JORC Code explanation	Comme	ntary									
		inc	677.10	732.60	55.5	0.3	0.7	0.0	3.6	0.4	1.0 g/t cut-off	20.4
		GYDD- 21-013	33.60	164.50	130.9	0.2	4.2	0.1	5.7	0.4	0.2 g/t cut-off	51.4
		inc	33.60	95.75	62.2	0.3	5.2	0.1	8.5	0.5	1.0 g/t cut-off	32.4
		inc	61.25	74.75	13.5	0.8	8.3	0.1	6.0	1.0	1.0 g/t cut-off	13.8
		and	189.15	517.45	328.3	0.2	2.2	0.1	23.3	0.4	EOH	114.9
		inc	341.04	432.00	91.0	0.4	1.7	0.1	32.3	0.6	0.5 g/t cut-off	55.3
		inc	341.04	350.00	9.0	0.9	1.7	0.0	7.9	1.0	1.0 g/t cut-off	8.9
		and	412.14	430.14	18.0	0.7	2.2	0.1	35.7	0.9	1.0 g/t cut-off	17.0
		GYDD-										
		22-014	15.30	609.80	594.50	0.16	2.22	0.05	7.34	0.28	0.1 g/t cut off	164.7
		inc	538.50	609.80	71.30	0.50	2.67	0.07	14.28	0.66	1.0 g/t cut off	46.9
		inc	556.50	584.30	27.80	1.14	4.43	0.12	27.61	1.43	1.0 g/t cut off	39.6
		GYDD-										
		22-015	3.00	308.70	305.70	0.15	4.65	0.15	1.54	0.46	0.1 g/t cut off	141.7
		incl.	87.10	146.90	59.80	0.19	7.06	0.25	1.48	0.69	1.0 g/t cut off	41.2
		and	257.65	304.90	47.25	0.38	6.74	0.25	1.30	0.89	1.0 g/t cut off	42.1
		inc	257.65	275.65	18.00	0.40	9.81	0.35	1.37	1.11	1.0 g/t cut off	20.0
		and	289.90	304.90	15.00	0.57	7.73	0.31	1.20	1.19	1.0 g/t cut off	17.8
		GYDD-										
		22-016	68.00	333.42	265.42	0.29	2.90	0.08	2.93	0.47	0.1 g/t cut off	123.5
		inc	225.80	333.42	107.62	0.51	5.65	0.16	2.09	0.86	1.0 g/t cut off	92.0
		inc	294.30	333.42	39.12	0.61	8.45	0.25	1.86	1.13	1.0 g/t cut off	33.9
		and	225.80	256.80	31.00	0.73	6.10	0.17	2.05	1.09	1.0 g/t cut off	44.1
		Drill Hole (#)	ificant inter From (m)	sections fr To (m)	om El Guay Interval (m)	yabo Proj Gold (g/t)	ect (Guaya Ag (g/t)	ibo Conce Cu (%)	ession)_Ca Mo (ppm)	amp #1, AuEq (g/t)	Phase #2 Drilling com Comments	pleted Tot intero (gra metr
		GYDD- 22-017	8.00	110.12	102.12	0.22	1.13	0.01	1.30	0.26	0.1 g/t AuEq cut off	26.
		incl.	8.00	70.40	62.40	0.30	1.57	0.02	1.30	0.36	0.1 g/t AuEq cut off	22.
		incl.	9.50	24.50	15.00	0.71	3.65	0.04	2.43	0.82	1.0 g/t AuEq cut off	12.
		and	153.96	172.03	18.07	0.47	2.63	0.02	1.82	0.53	1.0 g/t AuEq cut off	9.
		and	380.75	382.75	2.00	1.21	0.46	0.02	1.30	1.25	1.0 g/t AuEq cut off	2.5
		and	406.06	443.82	37.76	0.25	0.54	0.02	1.26	0.29	1.0 g/t AuEq cut off	10.
		and	521.25	686.65	165.40	0.21	0.73	0.04	2.85	0.28	0.1 g/t AuEq cut off	45.

Challenge ACN 123 5 ASX: CEL

10m options 44.2m perf rights 1205 Hay Street West Perth WA 6005 Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

E: admin@challengerex.com

Criteria	JORC Code explanation	Commen	tary									
		incl.	544.50	552.00	7.50	0.43	1.26	0.54	1.61	0.54	0.5 g/t AuEq cut off	4.0
		and	591.00	621.25	30.25	0.45	0.86	0.03	1.22	0.52	0.5 g/t AuEq cut off	15.6
		and	644.65	652.15	7.50	0.49	1.43	0.10	1.87	0.68	0.5 g/t AuEq cut off	5.1
		and	667.15	668.65	1.50	1.18	0.41	0.01	0.70	1.21	1.0 g/t AuEq cut off	1.8
		and	818.50	821.00	2.50	0.43	2.84	0.91	0.58	0.62	0.5 g/t AuEq cut off	1.5
		GYDD- 22-018	4.00	734.05	730.05	0.14	0.67	0.03	5.85	0.21	0.1 g/t AuEq cut off	151.3
		incl.	4.00	315.71	311.71	0.20	0.73	0.03	7.37	0.25	0.1 g/t AuEq cut off	79.0
		incl.	4.00	60.00	56.00	0.53	0.66	0.02	5.67	0.57	1.0 g/t AuEq cut off	31.8
		incl.	32.00	60.00	28.00	0.82	0.78	0.02	5.83	0.86	1.0 g/t AuEq cut off	24.1
		and	129.00	130.50	1.50	1.96	0.26	0.01	2.50	1.98	1.0 g/t AuEq cut off	3.0
		and	177.30	178.80	1.50	1.12	1.11	0.05	5.60	1.20	1.0 g/t AuEq cut off	1.8
		and	243.30	244.80	1.50	1.05	1.28	0.04	4.50	1.13	1.0 g/t AuEq cut off	1.7
		and	383.25	388.65	5.40	0.14	1.45	0.09	3.20	0.32	0.1 g/t AuEq cut off	1.7
		and	423.15	434.40	11.25	0.24	0.84	0.03	6.58	0.31	0.1 g/t AuEq cut off	3.5
		and	583.90	626.50	42.60	0.44	0.95	0.06	5.43	0.55	1.0 g/t AuEq cut off	23.3
		and	698.30	701.30	3.00	0.51	0.54	0.04	1.68	0.59	0.5 g/t AuEq cut off	1.8
		GYDD- 22-019	77.30	855.50	778.20	0.23	0.58	0.01	0.79	0.26	0.1 g/t AuEq cut off	202.3
		incl.	77.30	92.10	14.80	0.30	3.75	0.02	3.30	0.38	0.1 g/t AuEq cut off	5.6
		and	292.30	570.00	277.70	0.33	0.75	0.01	2.59	0.36	0.1 g/t AuEq cut off	100.0
		incl.	328.13	499.47	171.34	0.46	0.89	0.01	2.13	0.49	1.0 g/t AuEq cut off	84.0
		incl.	328.13	426.50	98.37	0.63	0.64	0.01	2.34	0.66	1.0 g/t AuEq cut off	64.7
		incl.	328.13	334.92	6.79	1.87	4.70	0.07	1.28	2.05	1.0 g/t AuEq cut off	13.9
		and	384.47	426.50	42.03	0.85	0.36	0.01	3.08	0.87	1.0 g/t AuEq cut off	36.6
		incl.	384.47	408.50	24.03	1.30	0.46	0.02	3.54	1.34	1.0 g/t AuEq cut off	32.1
		and	463.50	465.00	1.50	1.51	4.49	0.02	1.90	1.60	1.0 g/t AuEq cut off	2.4
		and	497.04	499.47	2.43	3.13	24.21	0.16	2.51	3.70	1.0 g/t AuEq cut off	9.0
		and	538.50	540.00	1.50	2.13	5.89	0.13	2.30	2.42	1.0 g/t AuEq cut off	3.6
		and	688.20	855.50	167.30	0.40	0.53	0.02	3.67	0.45	0.5 g/t AuEq cut off	74.4
		incl.	688.20	839.00	150.80	0.43	0.56	0.02	3.09	0.48	0.5g/t AuEq cut off	71.8
		incl.	796.50	839.00	42.50	1.31	1.20	0.05	2.35	1.42	1.0 g/t AuEq cut off	60.4
		incl.	796.50	819.00	22.50	2.26	1.94	0.08	2.36	2.42	1.0 g/t AuEq cut off	54.5
		GYDD- 22-020	0.00	12.00	12.00	0.31	0.53	0.02	4.55	0.35	0.1 g/t AuEq cut off	4.2
		and	69.72	75.72	6.00	0.69	0.69	0.02	3.47	0.74	1.0 g/t AuEq cut off	4.4
		and	95.17	242.80	147.63	0.18	1.02	0.02	5.45	0.23	0.5g/t AuEq cut off	33.4
		incl.	119.17	200.79	81.62	0.20	1.09	0.03	6.24	0.26	1.0 g/t AuEq cut off	21.0
		and	290.50	445.50	155.00	0.13	1.70	0.05	3.65	0.24	0.1 g/t AuEq cut off	37.4
		incl.	292.00	299.50	7.50	0.46	3.75	0.16	4.06	0.78	0.5g/t AuEq cut off	5.9

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1

Office

Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Contact

T: +61 8 6380 9235

Criteria	JORC Code explanation	Commen	tary									
		and	385.00	433.50	48.50	0.19	2.59	0.08	4.59	0.35	0.1g/t AuEq cut off	16.9
		incl.	385.00	409.50	24.50	0.22	2.83	0.08	5.55	0.39	0.5g/t AuEq cut off	9.5
		and	623.50	750.00	126.50	0.28	0.98	0.04	5.73	0.37	0.1g/t AuEq cut off	47.2
		incl.	635.50	661.00	25.50	0.75	1.81	0.09	2.88	0.92	0.5g/t AuEq cut off	23.5
		incl.	637.00	652.00	15.00	1.03	2.24	0.12	3.54	1.27	1.0 g/t AuEq cut off	19.0
		incl.	729.00	731.00	2.00	0.94	1.24	0.08	3.50	1.10	1.0 g/t AuEq cut off	2.2
		GYDD- 22-021	5.20	646.00	640.80	0.11	1.88	0.06	9.45	0.25	0.1g/t AuEq cut off	158.3
		incl.	56.13	339.70	283.57	0.14	2.04	0.07	6.22	0.29	0.5g/t AuEq cut off	83.2
		incl.	56.13	129.30	73.17	0.14	2.04	0.07	8.30	0.29	0.5g/t AuEq cut off	83.2 27.4
		and	703.00	760.00	57.00	0.19	2.14 0.96	0.09	8.30 14.35	0.38	0.1g/t AuEq cut off	27.4 11.4
		GYDD-	703.00	700.00	57.00	0.11	0.90	0.04	14.55	0.20	0.1g/t Aueq cut on	11.4
		22-022	0.00	702.85	702.85	0.16	2.75	0.05	6.65	0.29	0.1g/t AuEq cut off	204.4
		incl.	23.90	52.00	28.10	0.18	30.43	0.04	1.44	0.63	1.0 g/t AuEq cut off	17.6
		and	278.20	395.80	117.60	0.22	3.16	0.09	5.67	0.42	0.1 g/t AuEq cut off	49.7
		incl.	292.40	307.75	15.35	0.43	4.27	0.09	5.95	0.65	0.5g/t AuEq cut off	9.9
		incl.	352.00	365.70	13.70	0.29	4.60	0.16	3.29	0.62	0.5g/t AuEq cut off	8.5
		incl.	378.18	385.30	7.12	0.59	2.50	0.11	8.98	0.82	0.5g/t AuEq cut off	5.8
		and	446.50	523.60	77.10	0.42	2.74	0.12	5.68	0.67	1.0 g/t AuEq cut off	51.3
		incl.	446.50	450.53	4.03	2.14	5.01	0.19	7.16	2.52	1.0 g/t AuEq cut off	10.2
		and	492.20	520.60	28.40	0.63	3.59	0.18	9.96	0.99	1.0 g/t AuEq cut off	28.0
		GYDD- 22-023	15.50	795.55	780.05	0.18	2.07	0.04	6.36	0.31	0.1 g/t AuEq cut off	240.0
		incl.	15.50	305.70	290.20	0.34	2.70	0.04	5.11	0.45	0.1 g/t AuEq cut off	130.9
		incl.	35.00	44.00	9.00	0.95	1.20	0.03	0.76	1.02	1.0 g/t AuEq cut off	9.2
		incl.	144.70	161.20	16.50	0.73	3.21	0.06	7.09	0.87	1.0 g/t AuEq cut off	14.4
		and	195.30	196.80	1.50	0.79	56.00	0.03	1.80	1.53	1.0 g/t AuEq cut off	2.3
		and	222.80	277.00	54.20	0.73	4.72	0.07	10.75	0.91	0.5g/t AuEq cut off	49.5
		incl.	224.30	252.70	28.40	1.05	3.45	0.05	7.54	1.17	1.0 g/t AuEq cut off	33.3
		and	441.50	557.85	116.35	0.35	3.97	0.08	4.39	0.54	0.1 g/t AuEq cut off	62.4
		incl.	461.00	462.50	1.50	0.99	13.40	0.22	4.50	1.53	1.0 g/t AuEq cut off	2.3
		incl.	510.60	545.85	35.25	0.74	6.76	0.14	6.64	1.06	1.0 g/t AuEq cut off	37.4
		GYDD- 22-024	10.10	648.25	638.15	0.30	2.07	0.13	10.53	0.55	0.1 g/t AuEq cut off	351.2
		incl.	10.10	53.70	43.60	0.19	3.17	0.02	3.16	0.26	0.1 g/t AuEq cut off	11.5
		and	94.80	118.80	24.00	0.17	0.39	0.03	11.41	0.23	0.1 g/t AuEq cut off	5.5
		and	144.80	146.30	1.50	7.89	2.85	0.02	2.10	7.96	1.0 g/t AuEq cut off	11.9
		and	332.16	648.25	316.09	0.49	3.31	0.24	14.53	0.95	0.1 g/t AuEq cut off	298.8
		OR	344.00	648.25	304.25	0.50	3.37	0.25	14.46	0.98	0.1 g/t AuEq cut off	296.9
		incl.	332.16	487.00	154.84	0.92	5.72	0.45	18.96	1.76	0.1 g/t AuEq cut off	272.5

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office

Office

Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Contact

T: +61 8 6380 9235

Criteria	JORC Code explanation	Commen	tary									
		incl.	344.00	452.50	108.50	1.28	7.78	0.62	20.00	2.44	1.0 g/t AuEq cut off	264.3
		incl.	369.25	418.75	49.50	2.36	13.96	1.13	26.35	4.45	1.0 g/t AuEq cut off	220.4
		OR	369.25	423.43	54.18	2.20	12.91	1.04	24.70	4.14	1.0 g/t AuEq cut off	224.1
		GY2DD- 22-001	191.00	202.20	11.20	0.74	14.46	0.01	2.26	0.94	0.5 g/t AuEq cut off	10.5
		and	290.40	291.30	0.90	1.26	2.56	0.00	1.20	1.30	1.0 g/t AuEq cut off	1.2
		and	403.10	492.50	89.40	0.13	6.71	0.01	3.13	0.22	0.5 g/t AuEq cut off	19.9
		incl.	403.10	412.80	9.70	0.41	15.24	0.01	1.84	6.06	0.5 g/t AuEq cut off	58.8
		and	592.60	596.68	4.08	0.85	120.96	0.01	4.05	2.37	0.1 g/t AuEq cut off	9.7
		GYDD-									0.1 g/t AuEq cut off	
		22-025	4.0	EOH	1190.0	0.2	1.3	0.1	12.6	0.3		357.0
		Incl.	4.0	515.1	511.1	0.3	2.1	0.1	11.9	0.4	0.1 g/t AuEq cut off	204.4
		Incl.	65.0	434.5	369.5	0.3	2.2	0.1	13.3	0.5	0.1 g/t AuEq cut off	184.8
		Incl.	65.0	243.3	178.8	0.5	2.4	0.1	8.8	0.6	0.3 g/t AuEq cut off	107.3
		Incl.	65.0	166.0	101.0	0.6	2.8	0.1	5.9	0.8	1.0 g/t AuEq cut off	80.8
		Incl.	65.0	101.0	36.0	0.8	2.5	0.1	5.1	0.9	1.0 g/t AuEq cut off	32.9
		GYDD-									1 g/t AuEq cut off	
		22-026	93.3	94.5	1.3	231.3	10.7	0.0	1.8	231.5		301.0
		and	94.5	1045.1	960.0	0.1	1.4	0.1	14.7	0.3	0.1 g/t AuEq cut off	212.7
		Incl.	208.5	563.6	355.1	0.2	1.9	0.1	24.3	0.4	0.1 g/t AuEq cut off	142.0
		and	208.5	239.0	30.5	0.4	5.3	0.1	26.6	0.6	1.0 g/t AuEq cut off	18.3
		Incl.	377.5	416.0	38.5	0.4	1.4	0.1	32.4	0.6	1.0 g/t AuEq cut off	23.1
		GYDD-									0.1 g/t AuEq cut off	
		22-027	0.0	eoh	871.9	0.2	1.3	0.0	14.2	0.3		261.6
		Incl.	92.6	367.9	275.3	0.3	1.8	0.0	8.3	0.4	0.1 g/t AuEq cut off	110.1
		Incl.	92.6	106.0	13.4	0.6	3.0	0.1	31.8	0.8	1.0 g/t AuEq cut off	10.2
		and	202.6	270.5	67.9	0.5	3.2	0.1	7.7	0.6	1.0 g/t AuEq cut off	40.7
		and	302.0	317.8	15.8	0.6	0.5	1.4	0.0	0.6	1.0 g/t AuEq cut off	40.8
		and	360.0	367.9	7.9	0.8	5.3	0.0	2.8	0.9	1.0 g/t AuEq cut off	6.8
		GYDD-									0.1 g/t AuEq cut off	
		22-028	4.5	379.7	375.2	0.2	2.5	0.1	1.6	0.4		150.1
		Incl.	4.5	23.3	18.8	0.7	1.2	0.0	4.7	0.7	1.0 g/t AuEq cut off	14.1
		and	172.3	366.6	194.3	0.2	3.4	0.1	1.3	0.5	0.1 g/t AuEq cut off	87.8
		and	318.0	366.6	48.6	0.5	6.4	0.3	1.1	1.0	1.0 g/t AuEq cut off	48.6
		GYDD-									0.1 g/t AuEq cut off	
		22-029	7.0	389.2	382.2	0.2	2.7	0.1	2.0	0.3		114.7
		Incl.	153.3	360.5	207.3	0.2	3.8	0.1	2.2	0.5	0.1 g/t AuEq cut off	103.7
		Incl.	192.3	226.8	34.5	0.2	8.3	0.2	3.5	0.7	1.0 g/t AuEq cut off	24.2
		and	342.2	360.5	18.3	0.6	4.4	0.2	1.6	1.0	1.0 g/t AuEq cut off	18.3

Issued Capital 1,261.1m shares 10m options . 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director

Directors

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commen	tary									
		GYDD-									0.1 g/t AuEq cut off	
		22-030	0.0	eoh	689.5	0.2	1.4	0.1	9.0	0.3	0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	234.4
		Incl.	75.4	393.0	317.7	0.4	1.2	0.1	15.0	0.5	0.1 g/t AuEq cut off	158.9
		Incl.	76.9	80.6	6.0	1.5	1.7	0.0	7.3	1.6	1.0 g/t AuEq cut off	9.8
		and	280.5	334.5	54.0	0.9	1.7	0.1	13.6	1.0	1.0 g/t AuEq cut off	54.0
		and	370.5	393.0	22.5	1.1	1.7	0.1	9.1	1.3	1.0 g/t AuEq cut off	29.3
		GYDD-									0.1 g/t AuEq cut	
		23-031	1.0	532.0	531.0	0.2	0.5	0.0	1.2	0.3		159.3
		Incl.	1.0	24.9	23.9	0.9	0.5	0.1	0.8	0.9	1 g/t AuEq cut	21.6
		and	152.6	185.7	33.1	0.5	1.5	0.0	1.7	0.6	1 g/t AuEq cut	19.9
		and	292.1	308.1	16.0	0.6	0.5	0.0	1.5	0.6	1 g/t AuEq cut	9.6
		GYDD-										
		23-032	0.0	781.5	781.5	0.2	1.3	0.0	8.6	0.3		212.6
		Incl.	120.3	377.2	257.0	0.4	1.8	0.0	6.5	0.5		122.6
		Incl.	120.3	270.7	150.5	0.6	2.4	0.0	7.9	0.7		100.4
		Incl.	120.3	188.3	68.1	1.0	3.6	0.1	9.3	1.1		77.6
		and	162.7	188.3	25.7	1.7	5.3	0.1	13.9	1.9		48.9
		GYDD-										
		23-033	7.0	449.2	442.2	0.2	2.1	0.1	3.7	0.3		125.1
		Incl.	164.3	411.9	247.6	0.2	3.0	0.1	4.6	0.4		99.5
		Incl.	216.2	367.6	151.4	0.2	4.0	0.1	4.1	0.5		70.8
		Incl.	216.8	225.0	8.2	0.5	11.8	0.1	1.6	0.7		6.1
		and	264.3	290.0	25.8	0.4	4.9	0.2	7.8	0.7		18.3
		and	335.0	364.6	29.6	0.3	5.8	0.2	1.8	0.6		18.5
		GYDD-										
		23-034	108.9	273.5	164.6	0.2	3.8	0.2	1.3	0.6		94.4
		Incl.	161.6	182.6	21.0	0.5	3.5	0.2	1.1	0.9		18.3
		and	224.2	250.9	26.7	0.3	7.0	0.3	1.4	1.0		26.3
		and	375.2	411.2	36.0	0.5	0.8	0.0	1.1	0.5		19.3
		GYDD-										
		23-035	0.0	268.7	268.7	0.1	0.7	0.0	4.6	0.2		55.9
		Incl.	55.8	84.0	28.2	0.4	1.0	0.0	1.4	0.4		12.3
		and	240.5	255.2	14.7	0.4	1.1	0.1	6.0	0.5		7.7
		GYDD-										
		23-036	65.9	67.4	1.5	2.9	1.7	0.0	0.8	2.9		4.4
		and	80.9	99.8	19.0	0.7	1.7	0.0	1.5	0.7		13.5
		and	189.9	767.5	577.6	0.1	1.0	0.0	4.5	0.2		123.1
		Incl.	189.9	353.2	163.3	0.3	0.8	0.0	2.4	0.4		63.7
		Incl.	189.9	253.3	63.4	0.6	0.7	0.0	1.2	0.7		42.6

Issued Capital 1,261.1m shares 10m options 44.2m perf rights

Australian Registere Level 1 1205 Hay Street West Perth WA 6005

Australian Registered Office

Office Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director

Pini Althaus, Non-Exec. Director

riteria	JORC Code explanation	Commen	tary									
		GYDD-										
		23-037	0.0	767.2	767.2	0.1	1.4	0.0	12.7	0.2		149.
		Incl.	81.9		101.8		1.9	0.0	4.3	0.3		32.4
		Incl.	150.7	173.2	22.5	0.3	2.1	0.1	3.4	0.5		11.
		and	390.5	438.8	48.3	0.1	2.5	0.1	16.4	0.3		14.
		GYDD-										
		23-038	157.7	235.3	77.6	0.1	2.0	0.1	1.1	0.3		20
		Incl.	212.2	235.3	23.1	0.2	2.0	0.1	1.1	0.4		9.
		and	321.9	483.3	161.4	0.1	2.1	0.1	2.7	0.3		40
		Incl.	321.9	376.5	54.7	0.2	3.4	0.1	3.3	0.4		21
		Incl.	360.3	376.5	16.2	0.5	4.5	0.1	4.0	0.8		12
		GYDD-										
		23-039	4.6	809.9	805.3	0.5	1.6	0.0		0.6		470
		Incl.	4.6		546.7	0.7	2.0	0.1	3.5	0.8		429
		Incl.	4.6	235.8	231.2	1.4	2.5	0.1	3.7	1.5		351
		Incl.	108.0	117.9	9.9	1.0	3.3	0.0	2.5	1.1		10
		and	190.5	202.8	12.3	21.4	1.5	0.0	1.9	21.5		263
		anu										
		Incl.	190.5	192.0		172.3 bo Project	8.0 (Guayabo	0.0 D Concess		172.4 se #1-#2 C	hannel completed	l (Incl. ir
		Incl. CEL: Signif MRE)	190.5	192.0	n El Guayal	bo Project	(Guayabo	o Concess	ion)_Phas	e #1-#2 C	hannel completed	d (Incl. ir Tota interc
		Incl. CEL: Signif MRE) Channel	190.5	192.0	n El Guayal Interval	bo Project Gold	(Guayabo	Cu Cu	ion)_Phas	e #1-#2 C AuEq		d <mark>(Incl. ir</mark> Tota interc (grai
		Incl. CEL: Signif MRE) Channel ID	190.5	192.0	n El Guayal	bo Project	(Guayabo	o Concess	ion)_Phas	e #1-#2 C	Channel completed	d <mark>(Incl. ir</mark> Tota interc (grai
		Incl. CEL: Signif MRE) Channel	190.5	192.0	n El Guayal Interval	bo Project Gold	(Guayabo	Cu Cu	ion)_Phas	e #1-#2 C AuEq	Comments 0.5 g/t cut off	d <mark>(Incl. ir</mark> Tota interc (grai mete
		Incl. CEL: Signif MRE) Channel ID CSADRI-	190.5 icant interse From (m) 0.00 2.00	192.0 ctions from To (m) 187.00 62.00	Interval (m) 187.0 60.0	Gold (g/t) 0.357 0.355	(Guayabo Ag (g/t) 1.983 2.912	Cu (%) 0.063 0.127	ion)_Phas Mo (ppm) 4.502 5.945	AuEq (g/t) 0.5 0.6	Comments 0.5 g/t cut off 0.5 g/t cut off	d (Incl. ir Tota interc (grai mete 91.4 36.1
		Incl. CEL: Signif MRE) Channel ID CSADRI- 001	190.5 icant interse From (m) 0.00	192.0 ctions from To (m) 187.00	Interval (m) 187.0	Gold (g/t) 0.357	(Guayabo Ag (g/t) 1.983	Cu (%) 0.063	ion)_Phas Mo (ppm) 4.502	e #1-#2 C AuEq (g/t) 0.5	Comments 0.5 g/t cut off 0.5 g/t cut off 0.5 g/t cut off	d (Incl. ir Tota interc (grai mete 91.8 36.6
		Incl. CEL: Signif MRE) Channel ID CSADRI- 001 inc	190.5 icant interse From (m) 0.00 2.00	192.0 ctions from To (m) 187.00 62.00	Interval (m) 187.0 60.0	Gold (g/t) 0.357 0.355	(Guayabo Ag (g/t) 1.983 2.912	Cu (%) 0.063 0.127	ion)_Phas Mo (ppm) 4.502 5.945	AuEq (g/t) 0.5 0.6	Comments 0.5 g/t cut off 0.5 g/t cut off 0.5 g/t cut off 0.5 g/t cut off	d (Incl. ir Tota interc (grai mete 91.8 36.0 11.5
		Incl. CEL: Signif MRE) Channel ID CSADRI- 001 inc inc inc	190.5 icant interse From (m) 0.00 2.00 22.00	192.0 ctions from To (m) 187.00 62.00 36.00	n El Guayal Interval (m) 187.0 60.0 14.0	Gold (g/t) 0.357 0.355 0.524 0.693 0.861	Ag (g/t) 1.983 2.912 2.847 2.573 3.635	Cu (%) 0.063 0.127 0.150	Mo (ppm) 4.502 5.945 10.909	AuEq (g/t) 0.5 0.6 0.8	Comments 0.5 g/t cut off 0.5 g/t cut off 0.5 g/t cut off 0.5 g/t cut off 1.0 g/t cut off	d (Incl. ir Tota interc (gran mete 91.8 36.0 11.5 5.1 29.9
		Incl. CEL: Signif MRE) Channel ID CSADRI- 001 inc inc inc inc	190.5 icant intersed From (m) 0.00 2.00 22.00 102.00 154.00 154.00	192.0 ctions from To (m) 187.00 62.00 36.00 108.00 183.00 167.00	El Guayal Interval (m) 187.0 60.0 14.0 6.0 29.0 13.0	Gold (g/t) 0.357 0.355 0.524 0.693 0.861 1.439	Ag (g/t) 1.983 2.912 2.847 2.573 3.635 6.688	Cu (%) 0.063 0.127 0.150 0.078 0.063 0.106	Mo (ppm) 4.502 5.945 10.909 2.693 7.062 10.254	AuEq (g/t) 0.5 0.6 0.8 0.9 1.0 1.7	Comments 0.5 g/t cut off 0.5 g/t cut off 0.5 g/t cut off 0.5 g/t cut off 1.0 g/t cut off 1.0 g/t cut off	d (Incl. ir Tota interce (gran mete 91.8 36.6 11.5 5.1 29.9 22.2
		Incl. CEL: Signif MRE) Channel ID CSADRI- 001 inc inc inc inc inc inc	190.5 icant intersed From (m) 0.00 2.00 22.00 102.00 154.00	192.0 ctions from To (m) 187.00 62.00 36.00 108.00 183.00	El Guayal Interval (m) 187.0 60.0 14.0 6.0 29.0	Gold (g/t) 0.357 0.355 0.524 0.693 0.861	Ag (g/t) 1.983 2.912 2.847 2.573 3.635	Cu (%) 0.063 0.127 0.150 0.078 0.063	Mo (ppm) 4.502 5.945 10.909 2.693 7.062	AuEq (g/t) 0.5 0.6 0.8 0.9 1.0	Comments 0.5 g/t cut off 0.5 g/t cut off 0.5 g/t cut off 0.5 g/t cut off 1.0 g/t cut off	d (Incl. ir Tota interce (gran mete 91.8 36.6 11.5 5.1 29.9 22.2
		Incl. CEL: Signif MRE) Channel ID CSADRI- 001 inc inc inc inc inc inc inc inc	190.5 icant intersed From (m) 0.00 2.00 22.00 102.00 154.00 154.00	192.0 ctions from To (m) 187.00 62.00 36.00 108.00 183.00 167.00	El Guayal Interval (m) 187.0 60.0 14.0 6.0 29.0 13.0	Gold (g/t) 0.357 0.355 0.524 0.693 0.861 1.439	Ag (g/t) 1.983 2.912 2.847 2.573 3.635 6.688	Cu (%) 0.063 0.127 0.150 0.078 0.063 0.106	Mo (ppm) 4.502 5.945 10.909 2.693 7.062 10.254	AuEq (g/t) 0.5 0.6 0.8 0.9 1.0 1.7	Comments 0.5 g/t cut off 0.5 g/t cut off 0.5 g/t cut off 0.5 g/t cut off 1.0 g/t cut off 1.0 g/t cut off	d (Incl. in Tota interco (grar mete 91.8 36.6 11.5 5.1 29.5 22.2 5.6
		Incl. CEL: Signif MRE) Channel ID CSADRI- 001 inc inc inc inc inc inc inc inc inc inc	190.5 icant intersed From (m) 0.00 22.00 102.00 154.00 154.00 173.00	To (m) 187.00 62.00 36.00 108.00 183.00 167.00 181.00	El Guayal Interval (m) 187.0 60.0 14.0 6.0 29.0 13.0 8.0	Gold (g/t) 0.357 0.355 0.524 0.693 0.861 1.439 0.608	Ag (g/t) 1.983 2.912 2.847 2.573 3.635 6.688 1.700	Cu (%) 0.063 0.127 0.150 0.078 0.063 0.106 0.043	Mo (ppm) 4.502 5.945 10.909 2.693 7.062 10.254 4.445	AuEq (g/t) 0.5 0.6 0.9 1.0 1.7 0.7	Comments 0.5 g/t cut off 0.5 g/t cut off 0.5 g/t cut off 1.0 g/t cut off 1.0 g/t cut off 0.5 g/t cut off	d (Incl. in Tota interce (grar meter 91.8 36.6 11.5 5.1 29.5 22.2 5.6 69.4
		Incl. CEL: Signif MRE) Channel ID CSADRI- 001 inc inc inc inc inc inc inc inc inc inc	190.5 icant intersed From (m) 0.00 2.00 22.00 102.00 154.00 154.00 173.00 0.00	192.0 ctions from To (m) 187.00 62.00 36.00 108.00 183.00 167.00 181.00 136.00	El Guayal Interval (m) 187.0 60.0 14.0 6.0 29.0 13.0 8.0 136.0	Gold (g/t) 0.357 0.355 0.524 0.693 0.861 1.439 0.608 0.434	Ag (g/t) 1.983 2.912 2.847 2.573 3.635 6.688 1.700 1.533	Cu (%) 0.063 0.127 0.150 0.078 0.063 0.106 0.043 0.033	Mo (ppm) 4.502 5.945 10.909 2.693 7.062 10.254 4.445 3.277	AuEq (g/t) 0.5 0.6 0.8 0.9 1.0 1.7 0.7 0.5	Comments 0.5 g/t cut off 0.5 g/t cut off 0.5 g/t cut off 0.5 g/t cut off 1.0 g/t cut off 1.0 g/t cut off 0.5 g/t cut off 0.5 g/t cut off	258 d (Incl. in Tota interce (gran meter 91.8 36.6 11.5 5.1 29.5 22.2 5.6 69.4 5.2 10.8

Issued Capital 1,261.1m shares 10m options . 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

T: +61 8 6380 9235 Kris Knauer, MD and CEO Sergio Rotondo, Chairman E: admin@challengerex.com Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Comment	ary									
		and and	186.00 497.20	310.00 513.20	124.0 16.0	0.171 0.610	0.882 0.440	0.025 0.021	5.863 1.878	0.2 0.7	0.1 g/t cut off 0.5 g/t cut off	28.4 10.4
		CSADRI- 003	0.00	73.50	73.5	0.270	3.002	0.087	2.108	0.5	0.5 g/t cut off	33.5
		inc inc	22.00 65.50	27.60 71.50	5.6 6.0	0.169 1.122	10.711 2.937	0.480 0.043	2.085 2.953	1.1 1.2	1.0 g/t cut off 1.0 g/t cut off	6.2 7.4
		CSADRI- 004	0.00	25.00	25.0	0.344	6.334	0.143	2.202	0.7	0.5 g/t cut off	16.6
		inc	0.00 20.50	6.00 23.50	6.0 3.0	0.922 0.432	6.087 22.255	0.135 0.465	1.937 2.040	1.2 1.5	1.0 g/t cut off 1.0 g/t cut off	7.4 4.5
		CSTINO- 001	0.00	111.30	5.0 111.3	0.432	1.055	0.465	4.962	0.3	0.1 g/t cut off	4.5 36.2
		CSTINO-	2.82	25.67	22.8	0.360	1.907	0.029	4.937	0.4	0.1 g/t cut off	10.0
		002 inc	2.82	7.01	4.2	1.605	3.023	0.056	3.384	1.7	1.0 g/t cut off	7.3
		CSTINO- 004	0.00	19.37	19.4	0.042	1.272	0.042	3.892	0.1	0.1 g/t cut off	2.5
		CSTINO- 005	0.00	174.40	174.4	1.093	1.889	0.038	4.774	1.2	1.0 g/t cut off	206.4
		inc	2.12	8.18	6.1	13.43 3	7.846	0.059	2.872	13.6	10.0 g/t cut off	82.5
		inc inc	30.13 68.03	36.12 74.27	6.0 6.2	4.139 1.277	5.592 2.550	0.081 0.035	2.506 4.128	4.3 1.4	1.0 g/t cut off 1.0 g/t cut off	26.0 8.6
		inc CSSALI-	148.49	156.58	8.1	5.939	3.354	0.059	5.072	6.1	5.0 g/t cut off	49.2
		001 CSSALI-	0.00	16.73	16.7	0.194	3.346	0.014	2.584	0.3	0.1 g/t cut off	4.4
		007 inc	9.92 31.76	79.28 63.35	69.4 31.6	0.153 0.256	7.948 14.174	0.047 0.068	3.794 5.363	0.3 0.5	0.1 g/t cut off 0.5 g/t cut off	23.1 17.4
		inc CSCAYA	51.70	61.42	9.7	0.202	35.702	0.153	4.352	0.9	0.5 g/t cut off	8.8
		1-001 CSCAYA	30.00	78.30	48.3	0.235	0.964	0.020	3.401	0.3	0.1 g/t cut off	13.7
		1-002	0.00	32.00	32.0	0.989	2.676	0.030	3.471	1.1	1.0 g/t cut off	34.4
		CSCAYA 1-003	0.00	56.30	56.3	0.272	1.582	0.042	9.314	0.4	0.1 g/t cut off	20.8
		inc CSCHON -001	28.00 0.00	48.00 26.67	20.0 26.7	0.352 0.278	1.993 3.026	0.048 0.027	13.609 5.517	0.5 0.4	0.5 g/t cut off 0.1 g/t cut off	9.3 9.8

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director Contact

T: +61 8 6380 9235

Criteria	JORC Code explanation	Comment	tary									
		CSCHOR R-001	0.00	15.87	15.9	0.138	3.068	0.037	4.758	0.2	0.1 g/t cut off	3.8
		CSCHOR R-002	9.95	35.12	25.2	0.215	4.541	0.048	2.040	0.4	0.1 g/t cut off	8.9
		inc	9.95	13.97	4.0	0.929	14.603	0.153	1.396	1.4	1.0 g/t cut off	5.5
		CSCHOR R-003	0.00	17.99	18.0	1.026	8.422	0.037	6.311	1.2	1.0 g/t cut off	21.5
		inc	8.02	15.96	7.9	2.007	13.955	0.048	2.957	2.3	1.0 g/t cut off	18.0
		CSBARR- 001	0.00	23.10	23.1	0.363	0.964	0.036	3.136	0.4	0.1 g/t cut off	10.1
		CSBARR- 004	0.00	26.40	26.4	0.263	2.908	0.040	6.480	0.4	0.1 g/t cut off	9.8
		inc	13.80	24.90	11.1	0.451	3.917	0.042	2.370	0.6	0.5 g/t cut off	6.4
		CSBARR- 005	0.00	12.00	12.0	0.188	1.532	0.025	9.233	0.3	0.1 g/t cut off	3.1
		CSBQCU 1-001	0.00	39.10	39.1	0.220	14.129	0.037	1.042	0.5	0.5 g/t cut off	17.
		inc	0.00	8.00	8.0	0.340	15.700	0.038	0.928	0.6	0.5 g/t cut off	4.8
		inc	34.00	38.00	4.0	0.253	33.725	0.072	1.294	0.8	0.5 g/t cut off	3.2
		CSBQCU 1-002	0.00	12.00	12.0	0.423	17.840	0.108	1.448	0.8	0.5 g/t cut off	9.9
		CSBQCU 1-003	0.00	10.00	10.0	0.295	16.046	0.038	1.022	0.6	0.5 g/t cut off	5.6
		CSBQCU 1-004	0.00	4.00	4.0	0.120	4.830	0.015	0.780	0.2	0.2 g/t cut off	0.8
		CSBQCU 1-005	0.00	11.20	11.2	0.594	12.531	0.062	0.906	0.9	0.5 g/t cut off	9.6
		CSBQCU 1-006	0.00	12.00	12.0	0.315	16.168	0.062	1.170	0.6	0.5 g/t cut off	7.4
		CSBQSU 1-001	0.00	19.00	19.0	0.298	1.572	0.026	1.373	0.4	0.2 g/t cut off	6.9
		CSBQSU 2-001	12.00	38.00	26.0	0.785	1.961	0.009	1.657	0.8	0.5 g/t cut off	21.
		CSBQSU 2-002	0.00	9.00	9.0	12.43 7	11.057	0.019	1.250	12.6	10.0 g/t cut off	113
		CSBQSU 3-001	0.00	7.50	7.5	, 6.980	6.423	0.017	1.033	7.1	5.0 g/t cut off	53.
		CSBQN W1-002	0.00	17.40	17.4	3.164	6.031	0.024	2.587	3.3	1.0 g/t cut off	57.
		inc	0.00	12.00	12.0	0.661	1.685	0.009	1.537	0.7	0.5 g/t cut off	8.4

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director T: +61 8 6380 9235

E: admin@challengerex.com

Criteria	JORC Code explanation	Comme	Commentary										
		CSBQN W2-001	0.00	12.65	12.7	0.977	20.993	0.100	1.742	1.4	1.0 g/t cut off	17.	
		CSBQN W2-002	0.00	26.73	26.7	0.202	6.268	0.064	1.090	0.4	0.2 g/t cut off	10	
		CSFIGR1 -001	0.00	17.39	17.4	0.881	4.933	0.066	1.220	1.1	1.0 g/t cut off	18	
		inc	10.21	15.60	5.4	2.169	5.654	0.064	1.361	2.3	1.0 g/t cut off	12	
		CSFIGR2 -001	0.00	29.48	29.5	0.674	30.075	0.243	1.889	1.5	1.0 g/t cut off	43	
		inc	18.17	27.65	9.5	1.585	79.153	0.525	2.420	3.5	1.0 g/t cut off	33	
		CSFIGR2 -002	0.00	5.23	5.2	1.805	85.161	1.986	2.357	6.2	5.0 g/t cut off	32	
		CSCARE 1-001	0.00	24.00	24.0	0.083	0.345	0.032	10.317	0.1	0.1 g/t cut off	3	
		CSCARE 1-002	0.00	25.20	25.2	0.144	1.401	0.038	12.310	0.2	0.2 g/t cut off	5	
		CSCARE 1-003	0.00	94.40	94.4	0.137	4.255	0.079	15.214	0.3	0.2 g/t cut off	3	
		CSCARE 1-005	29.70	46.90	17.2	0.178	1.694	0.022	22.333	0.3	0.2 g/t cut off	4	
		CEL: Sign Channel	ificant intersec	tions from	El Guayabo	o Project Gold	(Guayabo _{Ag}	Concessi Cu	on)_Phase Mo	e #1-#2 C l AuEq	hannel (New Resu	I lts) To inte (gi	
		ID	From (m)	To (m)	(m)	(g/t)	(g/t)	(%)	(ppm)	(g/t)	Comments	me	
		CSBQLB 1-001	0.00	23.00	23.0	0.091	0.707	0.064	5.033	0.2	0.2 g/t cut off	4	
		CSBQLB 1-004	0.00	13.51	13.5	0.166	5.356	0.068	1.599	0.3	0.2 g/t cut off	4	
		CSBQLB	0.00	17.54	17.5	0.625	3.237	0.018	3.453	0.7	0.5 g/t cut off		
		1-005	0.00									1.	
		inc	5.98	11.99	6.0	1.287	3.814	0.024	2.395	1.4	1.0 g/t cut off		
		inc CSBQLB 2-001		11.99 35.32	6.0 35.3	1.287 0.312	3.814 2.390	0.024 0.031	2.395 8.106	1.4 0.4	1.0 g/t cut off 0.2 g/t cut off	8	
		inc CSBQLB	5.98									8 14	
		inc CSBQLB 2-001 CSBQLB 2-002 inc	5.98 0.00	35.32	35.3	0.312	2.390	0.031	8.106	0.4	0.2 g/t cut off	8 14 5	
		inc CSBQLB 2-001 CSBQLB 2-002	5.98 0.00 0.00	35.32 5.97	35.3 6.0	0.312 0.859	2.390 0.792	0.031 0.044	8.106 5.197	0.4 0.9	0.2 g/t cut off 0.5 g/t cut off	12 8. 14 5. 5. 11	

ASX: CEL

1,261.1m shares 10m options 44.2m perf rights Level 1 1205 Hay Street West Perth WA 6005

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commer	Commentary									
		inc	6.15	10.27	4.1	1.914	0.255	0.032	4.097	2.0	1.0 g/t cut off	8.
		CSBQSU 7-002	0.00	7.97	8.0	0.175	0.486	0.029	3.196	0.2	0.2 g/t cut off	1.
		CSDURA -001	0.00	7.90	7.9	0.073	0.299	0.039	2.503	0.1	0.1 g/t cut off	1.
		CSDURA -002	0.00	43.20	43.2	0.225	0.942	0.026	1.996	0.3	0.2 g/t cut off	12
		CSDURA -003	0.00	27.30	27.3	0.226	2.378	0.035	3.109	0.3	0.2 g/t cut off	8
		CSDURA -004	0.00	2.20	2.2	0.433	12.748	0.098	1.565	0.8	0.5 g/t cut off	1
		CSDURA -005	0.00	1.90	1.9	1.284	46.937	0.666	1.342	3.0	1.0 g/t cut off	5
		CSDURA -006	0.00	45.80	45.8	1.268	4.751	0.030	5.324	1.4	1.0 g/t cut off	63
		inc	2.00	19.80	17.8	2.499	7.144	0.038	7.507	2.7	1.0 g/t cut off	47
		CSDURA -007	0.00	22.20	22.2	0.553	3.227	0.015	2.636	0.6	0.5 g/t cut off	13
		CSDURA -008	0.00	2.20	2.2	0.328	4.038	0.019	1.245	0.4	0.2 g/t cut off	0
		CSDURA -009	0.00	1.90	1.9	4.859	38.324	0.312	1.096	5.9	5.0 g/t cut off	11
		CSDURA -010	0.00	2.20	2.2	4.835	10.733	0.197	0.907	5.3	5.0 g/t cut off	11
		CSDURA -011	0.00	1.60	1.6	1.625	50.569	0.284	1.173	2.7	1.0 g/t cut off	4
		CSDURA -012	0.00	1.00	1.0	0.477	7.270	0.054	1.160	0.7	0.5 g/t cut off	0
		CSDURA -013	0.00	1.30	1.3	0.146	6.860	0.076	1.750	0.4	0.2 g/t cut off	0
		CSDURA -014	0.00	1.00	1.0	1.090	3.110	0.017	1.370	1.2	1.0 g/t cut off	1
		CSDURA -015	0.00	1.30	1.3	0.995	6.510	0.008	1.280	1.1	1.0 g/t cut off	1
		CSDURA -016	0.00	1.10	1.1	1.188	8.130	0.019	1.610	1.3	1.0 g/t cut off	1
		CSDURA -017	0.00	1.10	1.1	1.286	16.500	0.062	1.610	1.6	1.0 g/t cut off	1
		CSDURA -018	0.00	1.10	1.1	0.719	14.700	0.101	2.160	1.1	1.0 g/t cut off	1

ASX: CEL

10m options . 44.2m perf rights Level 1 1205 Hay Street West Perth WA 6005

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commenta	ary									
		CSDURA -019	0.00	1.10	1.1	18.65 0	49.100	0.447	0.850	20.0	10.0 g/t cut off	22.0
		CSDURA -020	0.00	1.20	1.2	0.416	4.950	0.037	0.950	0.5	0.5 g/t cut off	0.6
		CSDURA -021	0.00	26.70	26.7	0.333	1.294	0.041	1.175	0.4	0.2 g/t cut off	11.2
		CSBQLB 3-001	0.00	63.90	63.9	0.321	2.029	0.034	5.873	0.4	0.2 g/t cut off	26.1
		CSBQLB 3-004	0.00	7.80	7.8	0.199	1.094	0.018	6.632	0.2	0.2 g/t cut off	1.9
		CSBQLB 4-001	3.70	78.80	75.1	0.169	0.920	0.016	1.475	0.2	0.2 g/t cut off	15.7
		CSBQLB 4-002	0.00	25.80	25.8	0.328	2.596	0.038	2.135	0.4	0.2 g/t cut off	11.0
		CSBQLB 5-002	1.90	22.90	21.0	0.638	0.874	0.013	2.037	0.7	0.5 g/t cut off	14.1
		CSBQLB 5-003	0.00	5.30	5.3	1.057	1.378	0.019	2.315	1.1	1.0 g/t cut off	5.9
		CSBQLB 6-001	1.52	23.56	22.0	2.625	1.998	0.023	1.193	2.7	1.0 g/t cut off	59.3
		CSBQLB 6-002	0.00	13.37	13.4	5.267	5.282	0.098	1.732	5.5	5.0 g/t cut off	73.5
		CSBQLB 7-001	58.84	156.82	98.0	0.365	2.315	0.017	1.142	0.4	0.2 g/t cut off	41.4
		inc	85.70	103.68	18.0	0.926	5.884	0.020	1.300	1.0	1.0 g/t cut off	18.6
		CSL9870 -001	8.07	131.82	123.7	0.295	0.609	0.012	1.351	0.3	0.2 g/t cut off	40.1
		inc	84.35	124.81	40.5	0.587	0.874	0.010	1.638	0.6	0.5 g/t cut off	24.9
		CSL9870 -002	0.00	18.37	18.4	0.337	0.252	0.008	1.191	0.4	0.2 g/t cut off	6.5
		CSL9870 -005	0.00	15.74	15.7	0.837	0.555	0.006	1.744	0.9	0.5 g/t cut off	13.5
		CSL9970 -002	0.00	3.57	3.6	1.445	2.065	0.012	1.504	1.5	1.0 g/t cut off	5.3
		CSL9970 -004	16.09	38.62	22.5	0.243	0.627	0.018	4.345	0.3	0.2 g/t cut off	6.4
		CSL9970 -005	0.00	22.93	22.9	0.941	1.881	0.019	47.204	1.0	1.0 g/t cut off	23.6
		CSL9970 -008	0.00	16.27	16.3	0.289	0.216	0.017	10.883	0.3	0.2 g/t cut off	5.3

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005
 Directors
 Contact

 Kris Knauer, MD and CEO
 T: +61 8 6380 9235

 Sergio Rotondo, Chairman
 E: admin@challengerex.com

 Sonia Delgado, Executive Director
 Fletcher Quinn, Non-Exec Director

 Pini Althaus, Non-Exec. Director
 Fletcher Quint, Non-Exec. Director

Criteria	JORC Code explanation	Commen	tary									
		CSL9970 -009	0.00	12.57	12.6	0.209	0.176	0.027	5.380	6 0.3	3 0.2 g/t cut off	3.3
		CSL9735 -002	0.00	3.56	3.6	0.512	0.074	0.011	0.88	5 0.	5 0.5 g/t cut off	1.9
		CSL9635 -001	0.00	15.86	15.9	0.749	1.378	0.005	0.91	7 0.3	8 0.5 g/t cut off	12.3
		CSL9635 -002	0.00	15.69	15.7	1.736	4.938	0.018	1.446	6 1.	8 1.0 g/t cut off	28.7
		CEL: Signifi Drill Hole	cant inter From	sections fro To	m El Guaya	a bo Projec Gold	t (Colorad	l o V Conc Cu	ession)_ (Mo	Camp #1 AuEq	., Phase #1 drilling con Comments	mpleted Total intercept (gram
		(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(ppm)	(g/t)		metres)
		CVDD-										
		22-001	4.50	533.20	528.70	0.30	2.30	0.09	13.22	0.49	1.0 g/t cut off	260.8
		incl.	4.50	401.60	397.10	0.34	2.76	0.11	14.31	0.56	1.0 g/t cut off	222.4
		incl. and	6.00 166.60	114.00 296.80	108.00 130.20	0.42 0.42	2.83 3.33	0.13 0.12	15.75 15.55	0.68 0.67	1.0 g/t cut off 1.0 g/t cut off	73.8 87.8
		incl.	273.50	296.80 284.30	10.80	0.42 2.51	5.55 14.93	0.12	9.16	3.29	1.0 g/t cut off	35.6
		CVDD-	275.30	204.50	10.80	2.31	14.95	0.55	9.10	5.29	1.0 g/t cut on	55.0
		22-002	5.00	575.00	570.00	0.21	1.99	0.08	11.43	0.38	0.1 g/t cut off	218.6
		incl.	14.00	320.70	306.70	0.21	2.27	0.00	13.59	0.45	0.5 g/t cut off	138.2
		incl.	174.65	199.50	24.85	0.22	4.54	0.25	53.36	0.45	1.0 g/t AuEq cut off	22.7
		incl.	309.30	319.20	9.90	0.97	6.14	0.26	15.83	1.50	1.0 g/t AuEq cut off	14.8
		and	387.10	396.20	9.10	0.75	6.91	0.14	8.93	1.08	1.0 g/t AuEq cut off	9.8
		incl.	490.20	504.20	14.00	0.77	1.29	0.03	24.72	0.85	1.0 g/t AuEq cut off	11.9
		CVDD-	2.5	eoh	509.90	0.24	1.41	0.07	31.30	0.4	0.1 g/t AuEq cut off	203.96
		22-003	-								0, 1 1, 1, 1	
		incl.	2.5	246.5	244.00	0.36	1.76	0.09	44.80	0.6	0.5 g/t AuEq cut off	146.4
		incl.	2.5	159.4	156.90	0.44	1.76	0.10	54.70	0.7	1.0 g/t AuEq cut off	109.83
		incl.	2.5	75.8	73.30	0.55	1.81	0.11	59.10	0.8	1.0 g/t AuEq cut off	58.64
		incl.	66.3	75.8	9.50	0.85	1.40	0.13	146.00	1.2	1.0 g/t AuEq cut off	11.4
		CVDD-	203	eoh	456.20	0.13	0.91	0.05	10.90	0.25	0.1 g/t AuEq cut off	114.05
		22-004										
		incl.	443.9	649.3	205.40	0.19	1.00	0.06	11.10	0.3	0.5 g/t AuEq cut off	61.62
		incl.	448.4	504.5	56.10	0.23	1.13	0.07	8.30	0.4	1.0 g/t AuEq cut off	22.44
		incl.	593	602	9.00	0.58	0.87	0.04	6.70	0.7	1.0 g/t AuEq cut off	6.3

Issued Capital 1,261.1m shares 10m options 44.2m perf rights

Australian R Level 1 1205 Hay Stre

Australian Registered Office

0

Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Contact T: +61 8 6380 9235 E: admin@challengerex.com

riteria	JORC Code explanation	Commer	ntary									
		CVDD-	8.1	572.2	564.10	0.21	2.30	0.09	44.10	0.4	0.1 g/t AuEq cut off	225.6
		22-005										
		incl.	8.1	286.1	278.00	0.30	3.21	0.11	68.20	0.6	0.5 g/t AuEq cut off	166.
		incl.	25.8	154.5	128.70	0.39	3.36	0.11	112.10	0.7	1.0 g/t AuEq cut off	90.0
		CVDD-										
		22-006	96.4	600.7	504.3	0.31	1.43	0.07	1.8	0.3	0.1 g/t AuEq cut off	151.
		incl.	97.9	374.0	276.1	0.25	1.54	0.07	1.9	0.4	1.0 g/t AuEq cut-off	110.
		incl.	200.2	209.1	8.9	0.63	1.24	0.07	1.1	0.8	1.0 g/t AuEq cut-off	7.1
		and	257.9	374.0	116.1	0.39	2.56	0.14	2.0	0.5	1.0 g/t AuEq cut-off	58.
		incl.	257.9	288.9	31.0	0.32	3.99	0.16	1.4	0.6	1.0 g/t AuEq cut-off	18.
		and	365.0	374.0	9.0	1.51	1.98	0.22	1.7	1.9	1.0 g/t AuEq cut-off	17.
		CVDD-										
		22-007	73.9	806.1	732.2	0.20	1.16	0.04	8.1	0.3	0.1 g/t AuEq cut off	219
		incl.	251.0	589.3	338.3	0.30	1.49	0.06	6.8	0.4	1.0 g/t AuEq cut-off	135
		incl.	251.0	498.2	247.2	0.37	1.72	0.06	5.8	0.5	1.0 g/t AuEq cut-off	123
		incl.	251.0	301.7	50.7	0.78	1.79	0.06	5.1	0.9	1.0 g/t AuEq cut-off	45.
		and	422.5	438.3	15.8	0.62	1.59	0.06	4.0	0.7	1.0 g/t AuEq cut-off	11.
		CVDD-										
		22-008	129.8	179.2	49.5	0.20	0.66	0.02	1.3	0.25	0.1 g/t AuEq cut off	12.
		and	431.1	448.8	17.7	0.15	1.18	0.05	4.0	0.25	0.1 g/t AuEq cut off	4.4
		CVDD-										
		22-009	1.0	195.4	194.4	0.12	1.22	0.04	11.1	0.2	0.1 g/t AuEq cut off	38.
		and	259.3	397.8	136.5	0.08	1.15	0.06	12.4	0.2	0.1 g/t AuEq cut off	27.
		and	812.5	886.5	74.3	0.10	0.56	0.04	13.0	0.2	0.1 g/t AuEq cut off	14.
		CVDD-	444 5	000 4	772.0	0.07	1 20	0.00	11.0	0.4		200
		22-010	114.5	888.4	773.9	0.27	1.30	0.06	11.8	0.4	0.1 g/t AuEq cut off	309
		incl. incl.	182.3 182.3	585.1 482.1	402.8 299.8	0.40 0.50	1.65 1.83	0.08 0.09	10.9 11.7	0.6 0.7	1.0 g/t AuEq cut off 1.0 g/t AuEq cut off	241 209
		incl.	182.3 182.3	482.1 363.2	299.8 180.9	0.50	1.83 2.43	0.09	9.5	0.7 1.0	1.0 g/t AuEq cut off 1.0 g/t AuEq cut off	180
		incl.	182.3	244.7	62.4	1.53	2.43	0.11	9.5 7.0	1.0 1.8	1.0 g/t AuEq cut off	112
		CVDD-	102.3								1.0 g/ i Auey cui oli	112
		22-011	168.25	174.25	6.00	0.07	0.77	0.07	15.18	0.21	0.1 g/t AuEq cut off	1.2
		and	194.45	201.95	7.50	0.06	0.70	0.06	11.53	0.17	0.1 g/t AuEq cut off	1.3
		and	363.20	455.00	91.80	0.13	0.56	0.00	4.03	0.20	0.1 g/t AuEq cut off	18.
		incl.	363.20	367.70	4.50	0.13	0.62	0.04	11.91	0.20	0.1 g/t AuEq cut off	1.9
		and	397.70	433.70	36.00	0.24	0.61	0.03	3.03	0.32	0.1 g/t AuEq cut off	11.0
		CVDD-										
		22-012	46.12	48.75	2.63	0.63	1.89	0.02	1.92	0.68	0.1 g/t AuEq cut off	1.7
		and	123.85	153.85	30.00	0.17	1.03	0.01	1.78	0.20	0.1 g/t AuEq cut off	5.9
		and	215.44	239.44	24.00	0.19	4.70	0.01	1.86	0.26	0.1 g/t AuEq cut off	6.2
r Gold Limited	Issued Capital Austral	ian Registered Office	Directors			ntact	-	-		-		

Issued Capital 1,261.1m shares 10m options . 44.2m perf rights

Level 1 1205 Hay Street West Perth WA 6005 Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

T: +61 8 6380 9235

E: admin@challengerex.com

Criteria	JORC Code explanation	Commen	tary									
		and	413.87	429.69	15.82	0.23	0.58	0.00	1.54	0.24	0.1 g/t AuEq cut off	3.79
		CVDD- 22-013	227.00	472.75	245.75	0.16	1.37	0.01	2.65	0.20	0.1 g/t AuEq cut off	48.07
		incl.	265.00	291.00	26.00	0.20	2.50	0.01	1.32	0.25	0.1 g/t AuEq cut off	6.49
		and	319.00	333.00	14.00	0.23	4.16	0.02	2.91	0.31	0.1 g/t AuEq cut off	4.37
		and	366.40	367.40	1.00	1.56	1.19	0.01	1.80	1.59	1.0 g/t AuEq cut off	1.59
		and	396.00	449.90	53.90	0.27	2.02	0.01	2.47	0.28	0.1 g/t AuEq cut off	15.08
		incl.	434.50	435.90	1.40	1.72	11.00	0.08	0.90	1.99	1.0 g/t AuEq cut off	2.79
		and	731.70	733.20	1.50	0.30	0.39	0.01	1425.60	1.32	1.0 g/t AuEq cut off	1.98
		CVDD- 22-014	59.65	65.85	6.20	1.13	1.30	0.01	1.80	1.15	0.1 g/t AuEq cut off	7.16
		and	171.20	172.10	0.90	11.63	16.10	0.03	1.60	11.8 8	1.0 g/t AuEq cut off	10.70
		and	198.20	216.00	17.80	0.44	1.18	0.01	1.94	0.48	0.1 g/t AuEq cut off	8.48
		incl.	210.20	215.25	5.05	0.90	1.33	0.01	1.83	0.94	1.0 g/t AuEq cut off	4.76
		and	256.80	271.15	14.35	1.17	4.73	0.03	2.22	1.28	1.0 g/t AuEq cut off	18.31
		and	344.65	346.15	1.50	1.46	0.39	0.01	1.60	1.48	1.0 g/t AuEq cut off	2.21
		and	401.10	405.60	4.50	4.58	9.62	0.02	1.76	4.73	1.0 g/t AuEq cut off	21.30
		and	486.70	506.20	19.50	0.39	0.71	0.01	2.79	0.41	0.1 g/t AuEq cut off	8.02
		incl.	504.70	506.20	1.50	3.04	4.11	0.03	1.70	3.14	1.0 g/t AuEq cut off	4.71
		and	605.10	606.60	1.50	1.11	2.53	0.01	1.40	1.16	1.0 g/t AuEq cut off	1.73
		and	687.60	693.60	6.00	0.71	3.66	0.01	1.56	0.77	1.0 g/t AuEq cut off	4.63
		and	845.60	846.33	0.73	8.59	4.57	0.00	1.80	8.65	1.0 g/t AuEq cut off	6.32
		CVDD- 22-015	9.10	757.57	748.47	0.10	0.42	0.04	9.15	0.17	0.1 g/t AuEq cut off	127.96
		incl.	23.20	23.80	0.60	2.24	6.04	0.22	16.30	2.70	1.0 g/t AuEq cut off	1.62
		and	77.40	233.69	156.29	0.13	0.75	0.06	17.80	0.25	0.5 g/t AuEq cut off	39.23
		OR	77.40	291.75	214.35	0.13	0.68	0.06	18.05	0.24	0.1 g/t AuEq cut off	51.23
		incl.	169.62	171.12	1.50	0.97	0.64	0.06	8.40	1.09	1.0 g/t AuEq cut off	1.64
		and	364.20	365.70	1.50	0.88	1.11	0.15	8.40	1.15	1.0 g/t AuEq cut off	1.73
		and	440.70	442.20	1.50	1.25	0.71	0.05	0.80	1.35	1.0 g/t AuEq cut off	2.02
		and	646.57	648.07	1.50	5.96	0.22	0.02	1.50	6.00	1.0 g/t AuEq cut off	8.99
		CVDD- 22-016	10.80	81.00	70.20	0.42	7.15	0.01	4.08	0.53	0.5 g/t AuEq cut off	37.49
		incl.	10.80	22.80	12.00	0.58	5.86	0.02	2.14	0.68	1.0 g/t AuEq cut off	8.18
		and	36.30	48.70	12.40	1.48	18.52	0.01	14.33	1.74	1.0 g/t AuEq cut off	21.55
		and	275.00	515.90	240.90	0.11	2.26	0.02	3.34	0.16	0.1 g/t AuEq cut off	39.06
		incl.	312.50	326.00	13.50	0.14	5.42	0.04	5.66	0.27	0.1 g/t AuEq cut off	3.64
		and	397.50	436.50	39.00	0.20	2.60	0.01	2.44	0.26	0.1 g/t AuEq cut off	9.99

Issued Capital 1,261.1m shares 10m options . 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street

Directors

West Perth WA 6005


Contact T: +61 8 6380 9235 Kris Knauer, MD and CEO Sergio Rotondo, Chairman E: admin@challengerex.com Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director

Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation		Commen	tary									
		_	CVDD- 22-017	20.30	301.50	281.20	0.08	0.62	0.05	4.56	0.17	0.1 g/t AuEq cut off	47.06
			incl.	53.20	54.70	1.50	0.33	4.75	0.43	2.90	1.13	1.0 g/t AuEq cut off	1.69
			and	167.95	221.50	53.55	0.14	0.88	0.06	8.94	0.25	0.1 g/t AuEq cut off	13.39
			and	388.50	445.50	57.00	0.10	0.36	0.03	3.01	0.16	0.1 g/t AuEq cut off	8.93
			incl.	388.50	390.00	1.50	1.17	0.20	0.01	1.00	1.19	1.0 g/t AuEq cut off	1.78
		-	and	648.10	664.60	16.50	0.02	1.19	0.10	1.32	0.21	0.1 g/t AuEq cut off	3.43
	-	•											
Relationship	- These relationships are -	The geometry of th											

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

do, Chairman E: admin@challengerex.com o, Executive Director

Contact

T: +61 8 6380 9235

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The reporting is fair and representative of what is currently understood to be the geology and controls on mineralisation at the project.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	El Guayabo: Quantec Geophysical services conducted a SPARTAN Broadband Magnetotelluric and TITAN IP/EMAP surveys completed February 3rd to April 1st, 2019 over the El Guayabo property by Quantec Geoscience Ltd. on behalf of AAR Resources. The survey covered 16 square kilometersa with data collected on 300m 3D spacing on a gride oriented at 10 degrees and 100 degrees. The grid was moved 10 degrees so the survey could be orineted perpendicu;lar to the main geological srtuctures. The survey involved a total of 205 Magnetotelluric (MT) sites and 2 test TITAN IP/EMAP profiles were surveyed The final survey results to which will be delivered will consist of : • Inversion 2D products • 2D model sections (for each line) of the: • DC resistivity model; • IP chargeability model using the DC resistivity model as a reference; • IP chargeability model using a half-space resistivity model as a reference; • IP chargeability model; • Joint MT+DC resistivity model; • Joint MT+DC resistivity model; • Inversion 3D products • 3D MT model; • Cross-sections and Elevation Plan maps of the 3D MT models; Figures showing Survey Locations and Results are included in the boidy of this release DCIP INVERSION PROCEDURES DCIP is an electrical method that uses the injection of current and the measurement of voltage difference along with its rate of decay with det determine subsufface resistivity and chargeability respectively. Depth of investigation is mainly controlled by the
		of decay to determine subsurface resistivity and chargeability respectively. Depth of investigation is mainly controlled by the array geometry but may also be limited by the received signal (dependent on transmitted current) and ground resistivity. Chargeability is particularly susceptible to data with a low signal-to-noise ratio. The differences in penetration depth between DC resistivity and chargeability are a function of relative property contrasts and relative signal-to-noise levels between the two measurements. A detailed introduction to DCIP is given in Telford, et al. (1976). The primary tool for evaluating data is through the inversion of the data in two or three dimensions. An inversion model depends not only on the data collected, but also on the associated data errors in the reading and the "model norm". Inversion models are not unique and may contain "artefacts" from the inversion process. The inversion model may not accurately reflect all the information apparent in the

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1

1205 Hay Street

West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary
		actual data. Inversion models must be reviewed in context with the observed data, model fit, and with an understanding the model norm used. The DC and IP inversions use the same mesh. The horizontal mesh is set as 2 cells between electrodes. The vertical mesh designed with a cell thickness starting from 20 m for the first hundred metres to accommodate the topographic variat along the profiles, and then increases logarithmically with depth. The inversions were generally run for a maximum of iterations. The DC data is inverted using an unconstrained 2D inversion with a homogenous half-space of average input d as starting model. For IP inversions, the apparent chargeability \Box is computed by carrying out two DC resistivity forw models with conductivity distributions $\sigma(xi,zj)$ and $(1-\eta)\sigma(xi,zj)$ (Oldenburg and Li, 1994), where (xi,zj) specifies location in a 2D mesh. The conductivity distributions used in IP inversions can be the inverted DC model or a half space uniform conductivity. Two IP inversions are then calculated from the same data set and parameters using different referen- models. The first inversion of the IP data uses the previously calculated DC model as the reference model and is labelled IP dcref model. The second IP inversion uses a homogeneous half-space resistivity model as the reference model and labelled IP hsref model. This model is included to test the validity of chargeability anomalies, and to limit the possibility inversion artefacts in the IP model due to the use of the DC model as a reference. The results of this second IP inversion presented on the digital archived attached to this report.
		MAGNETOTELLURIC INVERSIONS The Magnetotelluric (MT) method is a natural source EM method that measures the variation of both the electric (E) a magnetic (H) field on the surface of the earth to determine the distribution at depth of the resistivity of the underlying roo A complete review of the method is presented in Vozoff (1972) and Orange (1989). The measured MT impedance Z, defined by the ratio between the E and H fields, is a tensor of complex numbers. This ten- is generally represented by an apparent resistivity (a parameter proportional to the modulus of Z) and a phase (argument Z). The variation of those parameters with frequency relates the variations of the resistivity with depth, the high frequence sampling the sub-surface and the low frequencies the deeper part of the earth. However, the apparent resistivity and 1 phase have an opposite behaviour. An increase of the phase indicates a more conductive zone than the host rocks and associated with a decrease in apparent resistivity. The objective of the inversion of MT data is to compute a distribution the resistivity of the surface that explains the variations of the MT parameters, i.e. the response of the model that fits to observed data. The solution however is not unique and different inversions must be performed (different programs, difference conditions) to test and compare solutions for artefacts versus a target anomaly. An additional parameter acquired during MT survey is the Tipper. Tipper parameters Tzx and Tzy (complex number represent the transfer function between the vertical magnetic field and the horizontal X (Tzx), and Y (Tzy) magnetic fiele respectively (as the impedance Z represent the transfer function between the electric and magnetic fields). This tipper i 'local' effect, mainly defined by the lateral contrast of the resistivity. Consequently, the tipper can be used to estimate the geological strike direction. Another important use of the tipper is to display its components as vectors, named induct vectors. The ind

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary			
		The depth of investigation is determined primarily by individual sounding may easily exceed 20 km. Howeve the array is comparable to the depth of investigation. The inversion model is dependent on the data, but a models are not unique, may contain artefacts of th information apparent in the actual data. Inversion mod The user must understand the model norm used and For this project, 2D inversions were performed on the direction is perpendicular to the profile for all sites: th field); no TE mode (cross line E-field) were used in the The 2D inversions were performed using the TM-mod assuming 10% and 5% error for the resistivity and p component Z. No static shift of the data has been app The 3D inversion was carried out using the CGG RLM over an area of approximately 5km x 3.5km. All MT si The 3D inversion was completed using a sub sample of the measured data from 10 kHz to 0.01 Hz with a nor impedance tensors (Zxx, Zxy, Zyx, and Zyy) were used The measured tipper data (Tzx, Tzy) were also used a homogenous half space with resistivity of 100 Ohm- mesh with 75 m x 75 m cell size was used in horizont. In addition a total of 129 samples distributed along chargeability properties (Chargeability M and Suscep Sample Core IP Tester, manufactured by Instrumenta only as first order estimate, and not as "absolute" (tru subject to some errors (i.e. wrong size of the core ent Colorado V:	er, the data can only be also on the associated da be inversion process and odels need to be reviewe evaluate whether the m e TITAN/EMAP profiles d he TM mode is then defi e 2D inversions. de resistivity and phase of hase respectively, which olied on the data. -3D inversion code. The tes from this current sur of the MT data with a maninal 4 frequencies per d d as input data with an asso m was used as the starti al directions in the resis on direction to accommod 12 holes were analysed otibility (SCPT 0.001 SI) tition GDD Inc. It should be e) value as readings by the	confidently interpre- ata errors and the m I may not therefore d in context with the odel is geologically p ata. For each profile, ned by the inline E-fi data interpolated at in is equivalent to 5% 3D inversions of the vey were used for the ximum of 24 frequei ecade. At each site, f issociated error set to 0 ng model for this 3D tivity model. The ver ate the inversion for to measure the resis The equipment used be noted that these r	accurately reflect all t accurately reflect all t observed data, model alausible. We assume the strike eld (and cross line H- 6 frequencies per decar 6 error on the impedar MT data were complet e 3D inversion. Incies at each site cover the complete MT comp to 5% on each parameter 0.02 on each parameter 0.02 on each parameter 0 MT inversion. A unifo tical mesh was defined boundary conditions. T stivity (Rho (Ohm*m) a d for the analyses was t measures should be tak
		Exploration Target: An Exploration Target for two mineralized zones on the soil anomalies, drill hole geological and assay information and assay information and assay information.	-		
		Exploration Target Anomaly A	Unit	Low estimate	
		Exploration raiget/monaly/r			High Estimate
		Surface area (100 ppb Au in soil envelope):	m²	250000	High Estimate 250000
			m² m		-

Challenger Go ACN 123 591 3 ASX: CEL

1,261.1m shares 10m options 44.2m perf rights Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director

Pini Althaus, Non-Exec. Director

E: admin@challengerex.com

riteria	JORC Code explanation	Commentary			
		Tonnage	Mt	260	275
		Grade Au	g/t	0.4	0.7
		Grade Ag	g/t	1.5	2.5
		tonnage above cut-off	%	70%	90%
		Contained Au	Moz	2.3	5.6
		Contained Ag	Moz	8.8	8 19.
		Exploration Target Anomaly B	Unit	Low estimate	High Estimate
		Surface area (100 ppb Au in soil envelope):	m ²	175000	175000
		Depth	m	400	400
		Bulk Density	kg/m ³	2600	2750
		Tonnage	Mt	182	193
		Grade Au	g/t	0.4	0.7
		Grade Ag	g/t	1.5	2.5
		% Tonnage above cut-off	%	70%	90%
		Contained Au	Moz	1.6	3.9
		Contained Ag	Moz	6.1	13.9
		Total of Target A & B	Unit	Low estimate	High Estimate
		Tonnage	Mt	442	468
		Contained Au	Moz	4.0	9.5
		Contained Ag	Moz	14.9	33.8
		The potential quantity and grade of the Colorado V Exploit exploration to estimate a Mineral Resource and that it is a Mineral Resource.	-		
		The following is an explanation of the inputs used in form		-	
		 Surface Area: The surface area of the target has be vertically to the surface. The surface projection of gold-in-soil anomaly contour. This area has been us 	the intersections in t	he drill holes coincid	es with the 100 ppb A
		 Depth: A depth of 400 metres from surface has been as 			
		underground bulk tonnage mining project would be controlled by steeply plunging / dipping intrusions a from surface.	e expected to extend	. The mineralization	at Colorado V is
		 Bulk Density: The bulk density is based on geologic bulk densities for these rock types are in the range 		e rocks that host the	mineralization. Typic

Issued Capital 1,261.1m shares 10m options 44.2m perf rights

Austral Level 1 1205 Ha

Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary
		 Gold and Silver grades: The gold and silver grade range has been estimated from the weighted average and median sample grades and deviations from mean from drill core and underground panel sampling. Proportion of tonnage above cut-off grade: These values are estimates based on drill hole intersection grade continuity down-hole assuming that not all of the Target volume, if sampled would be above the economic cut-off grade.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Drill test priority targets identified through exploration reported previously on both the EL Guayabo and Colorado V targets, centered on surface soil and rock chip sampling, underground channel sampling and previously completed drilling which has been relogged and resampled. Interpretation of magnetic survey data following calibration with drilling. Undertake additional IP and/or EM surveys subject to a review of the appropriateness of the techniques and calibration with drill hole data.

Section 3: Estimation and Reporting of Mineral Resources-El Guayabo Project

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation		Commentary	
Database integrity	corrupted by for exan	sure that data has not been nple transcription or keying error lection and its use for Mineral		both drilling completed by previous explorers, drill holes recently completed by erground channel samples completed by the Company.
	Resource estimation p - Data validation proce	purposes.	by the database / GIS	c drilling has been recently re-logged and re-sampled. These data are transcribed team into a database held on site at EMSA offices in Totara, Ecuador. Only the drill hole survey from the historic data has been directly transcribed from the historic newly generated.
			transcribed into the sa directly into MS Excel received from the labs	nnel samples and drill holes completed by the Company (Phase 1 and Phase 2) are ame database as the historic data. Drill hole collar, survey, logging is captured and peer reviewed before being given to the database team. Final assay data s is reviewed (blanks, duplicates and standards) and then added to the database. ata are retained in separate files.
lenger Gold Limited 123 591 382 CEL	Issued Capital 1,261.1m shares 10m options 44.2m perf rights	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director	Contact T: +61 8 6380 9235 E: admin@challengerex.com

Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary
		The drill hole data is backed up and is updated periodically.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	The Competent Person has undertaken site visits from 2019, during early-stage exploration and drilling. Early site visits were undertaken to review the progress of exploration prior to drilling and to review historic drill core. The most recent site visit was in June 2022 to review the geology, drilling program, collection of data, sampling procedures, sample submission and exploration program.
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect if any of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The geological interpretation and understanding of the controls on mineralisation has been used to model the geometry of the mineralised system. El Guayabo is a high-level porphyry intrusive and intrusive-related breccia complex with mineralisation controlled by regional scale and local scale fault- fracture zones and lithology contacts. Multiple pulses of mineralisation are evident in the alteration and vein overprinting relationships. Given the available data and understanding of the geological controls on mineralisation, the Competent Person has confidence in the geological model that has been used to constrain the high grade and low grade mineralised domains. At the El Guayabo deposits, continuity of grade between drill holes is determined by the intensity of fracturing, the host rock contacts (particularly intrusive – metamorphic sediment contacts). The high- grade over a 2,0 metre interval of $0.7 - 1.0$ g/t AuEq mineralised intersections, joined between holes using the AuEq grade, geology and controlling structure. The Low-grade domain surrounding the high- grade has been generated using Leapfrog to build a 0.2 g/t AuEq isosurface, following the main NE to ENE strike, dipping steeply NW with a nominal range of 200m. No alternative interpretations have been generated that form the basis for a Mineral Resource Estimate.
Dimensions	- The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral Resource.	The Mineral Resource consists of 3 sub-parallel zones. GY-A has a NE strike of 0.9 kilometres dipping NW at 80 degrees, width of 0.4 kilometres and and is estimated to a depth of 650 metres below surface. GY-B has a strike of 0.5 kilometres, dipping NW at 80 degrees, with of 0.2 kilometres and is estimated to a depth of 400 metres below surface. GY-C has a ENE strike of 0.8 kilometres, dipping NNW at 80 degrees, with of 0.2 kilometres and is estimated to a depth of 450 metres below surface. All 3 zones remain open in all directions.
Estimation and modelling techniques	- The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of	Estimation was made for Au Ag, Cu and Mo being the elements of economic interest. No previous Resource Estimation has been done to compare to the current Resource estimate. No production records are available to provide comparisons. A 2 metre composite length in the high-grade domain and a 3 metre composite length in the low-grade domain was selected after reviewing the composite statistics.

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

ered Office Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation	Commentary				
 computer software and parameters used. The availability of check estimates previous estimates and/or mine production records and whether the Min Resource estimate takes appropriate account of such The assumptions made regarding recovery of by-prod Estimation of deleterious elements or other non-grad variables of economic significance (eg sulphur for aci mine drainage characterisation). In the case of block model interpolation the block size relation to the average sample spacing and the searce employed. Any assumptions about correlation between variable Description of how the geological interpretation was to control the resource estimates. Discussion of basis for using or not using grade cuttin capping. The process of validation the checking process used t 	 computer software and parameters used. The availability of check estimates previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. 	Commentary A statistical analysis was undertaken on the sample composites top cuts for Au, Ag, Cu and Mo composites for each domain. The top-cut values were chosen by assessing the high-end distribution of the grade population within each domain and selecting the value above which the distribution became erratic. The following table shows the top cuts applied to each group <u>Domain</u> <u>Au (ppm)</u> <u>Ag (ppm)</u> <u>Cu (%)</u> <u>Mo (ppm)</u> <u>High-grade (GY-A, GY-B)</u> <u>10 70 - </u>				
	 capping. The process of validation the checking process used the comparison of model data to drill hole data and use of 	 Group Variography was carried out using Leapfrog Edge software on composited data from each of the domains for each variable. Variables in each domain were estimated using Ordinary Kriging. The orientation of the search ellipse a variogram model was controlled using surfaces designed to reflect the local orientation of the mineralized structures. An oriented "ellipsoid" search for each domain was used to select data for interpolation. Estimation search ellipse ranges were adjusted for each element in each domain based on the variogram ranges. 				
		Validation checks included statistical comparisor estimate results for each domain. Visual validatio sections was also completed in addition to swath on a range of northings. These checks show good sample grades.	on of grade tre h plots compar	ends for each e ing drill sampl	element alon e grades and	g the drill I model grades
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 					

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JORC Code explanation		Commentary		
Cut-off parameters	- The basis of the ado parameters applied.	oted cut-off grade(s) or quality	1800 / oz Ag US\$22 /c Average metallurgical Ecuador. No metallur For the AuEq calculati for Cu and 50% for Mo Accordingly, the form AuEq = Au g/t + (Ag g/ [50/85], or AuEq = Au Based on the break-ev ppm is used to report ounce and allowing fo g/t Au Eq cut off are c A AuEq cut-off grade of	ula used for Au Equivalent is: (t x 0.01222 x [60/85]) + (Cu % x [90/57.8778] x {85/85]) + (Mo % x 440.8/57.8778) g/t + (Ag g/t x 0.008627) + (Cu % x 1.555000) + (Mo % x 4.480026) ven grade for an optimised pit shell for gold equivalent, a AuEq cut-off grade of 0.3 the resource within an optimised pit shell run at a gold price of US\$1,800 per or Ag, Cu and Mo credits. Under this scenario, blocks with a grade above the 0.25 onsidered to have reasonable prospects of mining by open pit methods. of 0.40 ppm was used to report the resource beneath the optimised pit shell run a	
			these blocks are consi methods.	dered to have reasonable prospects of future mining by bulk underground	
Mining factors or assumptions			tof mining. A surface mining of model that would be a surface mine optimise surface mine optimise for a surface mine optimise of \$44,080 per - Average me - Ore and wase - Processing of - GA cost of \$4,080 per - Average me - Ore and wase - Processing of - GA cost of \$4,080 per - Average me - Ore and wase - Processing of - GA cost of \$4,080 per - Average me - Ore and wase - Processing of - GA cost of \$4,080 per - Average me - Ore and wase - Processing of - GA cost of \$4,080 per - Average me - Ore and wase - Processing of - GA cost of \$4,080 per - Average me - Ore and wase - Processing of - GA cost of \$4,080 per - Average me - Ore and wase - Processing of - GA cost of \$4,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Processing of \$44,080 per - Average me - Ore and wase - Processing of \$44,080 per - Average me - Processing of \$44,080 per - Average me - Processing per - Proces	 The Resource estimate has assumed that near surface mineralisation would be amenable to open pit mining. A surface mine optimiser has been used to determine the proportion of the Resource Estime model that would be amenable to eventual economic extraction by open pit mining methods. The surface mine optimiser used the following parameters with prices in USD: Au price of \$1,800 per oz, Ag price of \$22 per oz, Cu price of \$9,000 per tonne and Mo price \$44,080 per tonne Average metallurgical recoveries of 85 % for Au, 60 % for Ag and 85 % for Cu and 50 % for Ore and waste mining cost of \$2.00 per tonne Processing cost of \$7.60 per tonne GA cost of \$0.80 per tonne Refining, transport and marketing of \$60 / oz of AuEq Royalty net of transport cost – 3% NSR - \$52.20/oz AuEq. 47.5° overall pit slopes Blocks above a 0.30 g/t AuEq within the optimised open pit shell are determined to have reasonable prospects of future economic extraction by open pit mining and are included in the Resource estimate 	
enger Gold Limited 23 591 382 EL	Issued Capital 1,261.1m shares 10m options 44.2m perf rights	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Directors Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director	Contact T: +61 8 6380 9235 E: admin@challengerex.com	

Criteria	JORC Code explanation	Commentary
Metallurgical factors or assumptions	- The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made.	No metallurgical test work has been completed on the El Guayabo mineralisation. Metallurgical assumptions are based on recovery by floatation of separate Cu-Au-Ag and Mo concentrates as is proposed for similar projects in Ecuador with transport and shipping of the concentrates from ports nearby to the Project. The following assumptions are based on test work reported by Lumina Gold at the nearby Cangrejos Project, which is part of the same intrusive complex as El Guayabo. Gold – 85% (Lumina Gold PFS) Copper – 85% (PFS recovery is 79% but this is based on a mix of fresh (87%) and part oxidised (50%) whereas there is minimal oxidised material at El Guayabo - Lumina 43-101 report June 2022) Silver – 60% (PFS recovery is 55% but this is based on a mix of fresh (60%) and part oxidised (50%) whereas these is minimal oxidised material at El Guayabo) - Lumina 43-101 report June 2022) Molybdenum – 50% (Lumina 43-101 report June 2022)
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	It is considered that there are no significant environmental factors which would prevent mining. Mining is assumed to be crush, grind and sequential flotation with appropriate waste dump and tailings disposal. No detailed environmental impact studies have been completed.
Bulk density	 Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	The Company has collected 379 specific gravity (SG) measurements from drill core, which have been used to estimate block densities for the Resource Estimate. Measurements we determined on a dry basis by measuring the difference in sample weight in water and weight in air. The SG values across the different rock types and mineralisation styles are stable and so an average SG was applied for the whole block model to estimate the density. Of the SG values measure the range is 1.83 to 3.63 g/cc. The average value is 2.74 g/cc and the median value is 2.73 g/cc. A bulk density value of 2.73 g/cc (2,730 kg/m3) was applied to the blocks to estimate tonnage.

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Criteria	JC	RC Code explanation	Commentary	
Classification	-	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit.	The Mineral Resource has been classified based on the guidelines specified in the JORC Code. The classification level is based upon semi-qualitative assessment of the geological understanding of the deposit, geological and mineralisation continuity, drill hole spacing, QC results, search and interpolation parameters and an analysis of available density information. The estimation search strategy was undertaken in one pass with classification of the resource into Inferred. The potential open pit resource was constrained within an optimised pit shell run using a gold price of \$1,800 per ounce. Blocks inside the pit shell were reported above a AuEq cut-off grade of 0.30 ppm and blocks outside the pit shell were reported above a AuEq cut-off grade of 0.40 ppm. The Resource Estimate is classified 100% Inferred. The Competent Person has reviewed the result and determined that these classifications are appropriate given the drill hole spacing, domain constraints and confidence in the geology, data and results from drilling.	
Audits or reviews	-	The results of any audits or reviews of Mineral Resource estimates.	The Mineral Resource estimate has not been independently audited or reviewed.	
Discussion of relative accuracy/ confidence	-	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data where available.	 orientation of the controlling structure grade continuity and range modelling composite top cuts. No production data is available for comparison with block grades. 	

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director

Issued Capital 1,261.1m shares 10m options 44.2m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Kris Knauer, MD and CEO Sergio Rotondo, Chairman Sonia Delgado, Executive Director Fletcher Quinn, Non-Exec Director Brett Hackett, Non-Exec. Director Pini Althaus, Non-Exec. Director **Contact** T: +61 8 6380 9235 E: admin@challengerex.com