

ASX Announcement

18 May 2023

NEW DRILLING CONFIRMS COLINA LITHIUM PEGMATITES EXTEND TO OVER 2.0 KMS

Diamond Drilling for June Resource Update Completed

HIGHLIGHTS

- The new extension drilling to the west of the existing Colina MRE has encountered a significant lithium swarm extending the footprint of the Colina Deposit to over 2.0 km long by 1.0 km wide.
- Resource definition diamond drilling for the mineral resource update at the Colina Lithium Deposit in Brazil, is now complete, comprising a total of 133 drill holes for approximately 38,300m.
- The Colina Lithium Deposit mineral resource update is scheduled for completion in June.
- The Company's fleet of eight diamond drilling rigs will continue to operate on site through until
 December, undertaking systematic step-out drilling to the southwest of Colina, where the highgrade mineralisation remains open; targeted large diameter PQ drilling for metallurgical test work;
 as well as testing new regional targets.
- Assay turnaround from the laboratory continues to be fast, with latest results including:

o SADD093: 13.79m@ 1.52% Li₂O from 293.28m

O SADD095: 10.77m@ 1.39% Li₂O from 210.81m

SADD096: 12.35m @ 1.42% Li₂O from 235.47m

O SADD097: 19.60m@ 1.42% Li₂O from 114.30m

O SADD098: 9.12m @ 1.62% Li₂O from 184.72m

O SADD099: 10.46m@ 1.17% Li₂O from 171.85m

and: 10.75m @ 1.17% Li₂O from 246.25m

○ SADD100: 10.25m@ 1.50% Li₂O from 274.41m

○ SADD105: 11.65m@ 1.89% Li₂O from 271.23m

O SADD106: 12.08m@ 1.22% Li₂O from 244.30m

O SADD107: 24.74m@ 1.23% Li₂O from 50.16m

Latin Resources Limited (ASX: LRS) ("Latin" or "the Company") is pleased to provide an update on the latest assay results from resource definition drilling currently underway at the Company's 100% owned Salinas Lithium Project ("Salinas") in Brazil.

Resource definition drilling

The Company's fully funded diamond drilling campaign, aimed at providing sufficient drill coverage for the planned June Mineral Resource Estimate ("MRE"), is now complete, with all samples dispatched to the laboratory in Belo Horizonte for analysis.

A total of 133 drill holes (*Figure 2*) have been completed to date for approximately 38,300m of drill core, which represents a significant increase from the 47 holes used for the Company's maiden MRE completed in December 2022¹.

The extension drilling to the west of the existing Colina MRE has encountered a significant lithium swarm extending the footprint of the Colina Deposit to over 2.0 km long by 1.0 km wide. The Company is very confident that these lithium swarms may continue along strike to the southwest, providing the potential to further extend the Colina Deposit mineral resource in this direction with more drilling. A new drill program of step-out will now be designed to test the extension of the pegmatite structure.

Figure 1: SADD121 – selected drill core sample showing large light green spodumene crystals

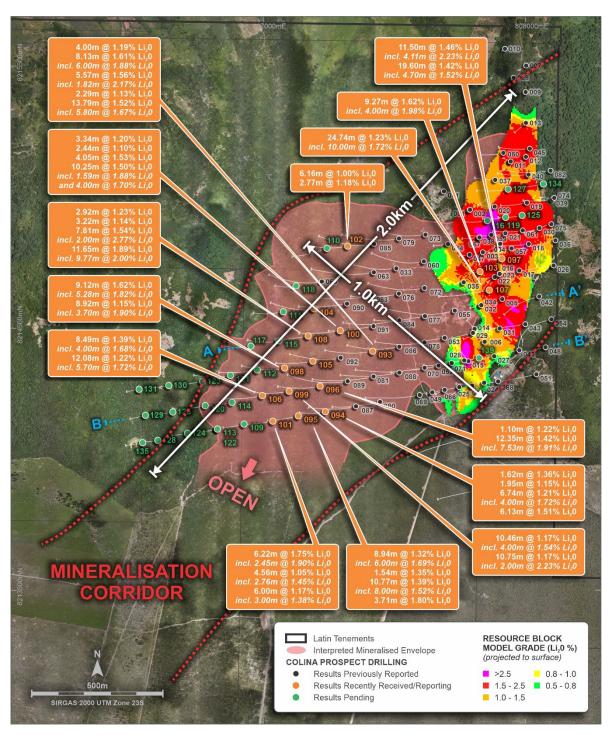


Figure 2: Colina Deposit drill collar plan highlighting potential MRE growth areas, including Colina West and Colina South

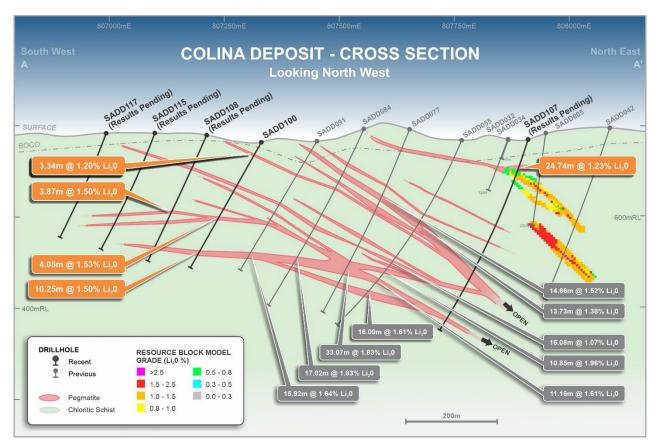


Figure 3: Drill section A-A' showing the existing Colina MRE block model, and selected pegmatite intersections

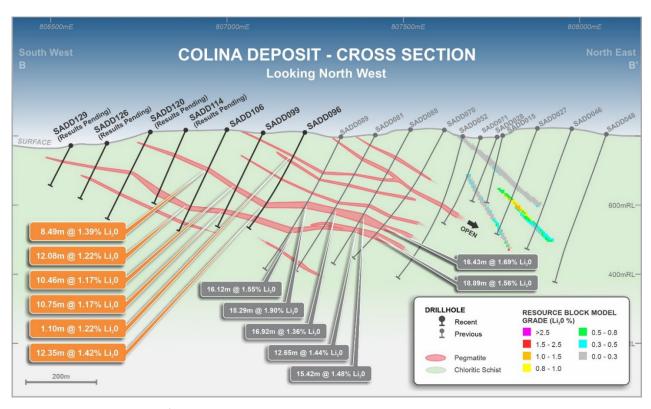


Figure 4: Drill section B-B' showing the existing Colina MRE block model, and selected pegmatite intersections

As with previous drilling, the consistency of both grade and pegmatite continuity continues to be demonstrated by the latest drilling results, with the Colina Deposit growing with each step-out drillhole.

Latest drilling intersections include²:

- O SADD093: 13.79m@ 1.52% Li₂O from 293.28m
- O SADD095: 10.77m@ 1.39% Li₂O from 210.81m
- O SADD096: 12.35m@ 1.42% Li₂O from 235.47m
- O SADD097: 19.60m@ 1.42% Li₂O from 114.30m
- O SADD098: 9.12m @ 1.62% Li₂O from 184.72m
- O SADD099: 10.46m@ 1.17% Li₂O from 171.85m
 - and: 10.75m @ 1.17% Li₂O from 246.25m
- O SADD100: 10.25m@ 1.50% Li₂O from 274.41m
- O SADD105: 11.65m@ 1.89% Li₂O from 271.23m
- O SADD106: 12.08m@ 1.22% Li₂O from 244.30m
- SADD107: 24.74m@ 1.23% Li₂O from 50.16m

Once all assay results have been returned from the laboratory, a complete database will be supplied to SGS Geological Services ("SGS") in Canada, who will undertake the independent update of the Colina MRE, which is expected to be completed in late June. This update will include the down dip extension of the existing Colina MRE, upgrading of portions of the existing Colina MRE from Inferred to Indicated status as well as incorporating the new pegmatite mineralisation encountered to the west, significantly expanding the overall size of the Deposit, which now covers an area of approximately 2.0 km by 1.0 km.

Drilling at Colina will continue to operate at full capacity, with all eight diamond drilling rigs remaining on site until the end of year. The focus of the drilling will now be split between ongoing systematic step-out drilling to the southwest of Colina, where the high-grade lithium mineralisation remains open (*Figure 2*); undertaking targeted large diameter PQ drilling to provide material for metallurgical pilot plant scale Dense Media Separation ("DMS"); and drill testing of several new target areas identified within the 'Colina Corridor' through the ongoing regional exploration mapping and geochemical sampling.

Latin Resources' VP of Operations - Americas, Tony Greenaway commented:

"The continued expansion of this lithium pegmatite deposit is phenomenal and has the whole team very excited to potentially see this develop into a tier one lithium deposit in the Minas Gerais Lithium Valley. We will now move some rigs to start testing to expand the deposit through systematic step-out to the southwest from the known Colina mineralisation or what our team call the Colina Corridor, where our deposit remains open.

"Our team on the ground at Colina has done an outstanding job to get through the full drilling program that we had planned for the upcoming June resource update. All holes are now complete, samples collected and are with the laboratory in Belo. We have been seeing fast turnaround from the lab, so we expect to have all results back for the beginning of June, when SGS in Canada will commence the estimation process.

"Now that this drilling milestone has been achieved, we will switch our focus on site, moving some of our drilling fleet to start drilling some large diameter drill core to collect the necessary metallurgical samples for our DFS studies. This will include running the samples through the SGS DMS pilot plant in Lakefield, Toronto.

"While we are all eagerly anticipating the outcome of the MRE update, our focus is very much to continue to advance this exceptional project on all fronts."

This Announcement has been authorised for release to ASX by the Board of Latin Resources

For further information please contact:

Chris Gale
Managing Director
Latin Resources Limited
+61 8 6117 4798

Fiona Marshall
Senior Communications Advisor
White Noise Communications
+61 400 512 109
fiona@whitenoisecomms.com

<u>info@latinresources.com.au</u> www.latinresources.com.au

About Latin Resources

Latin Resources Limited (ASX: LRS) is an Australian-based mineral exploration company, with projects in South America and Australia, that is developing mineral projects in commodities that progress global efforts towards Net Zero emissions.

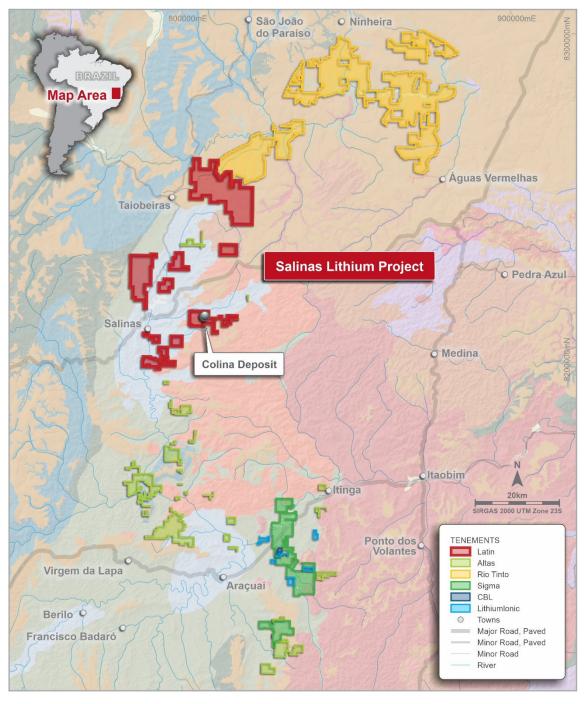
The Company is focused on its flagship Salinas Lithium Project in the pro-mining district of Minas Gerais Brazil, where the Company has defined a Maiden Mineral Resource Estimate of 13.3Mt @ 1.2% Li_2O with an exploration target of 22Mt at its Colina Deposit*. Latin has appointed leading mining consultant SGS Geological Services to undertake feasibility and metallurgical studies at the Salinas Lithium Project. Latin also holds the Catamarca Lithium Project in Argentina and through developing these assets, aims to become one of the key lithium players to feed the world's insatiable appetite for battery metals.

The Australian projects include the Cloud Nine Halloysite-Kaolin Deposit. Cloud Nine Halloysite is being tested by CRC CARE aimed at identifying and refining halloysite usage in emissions reduction, specifically for the reduction in methane emissions from cattle.

*For full details of the Colina Deposit MRE and Exploration Target, please refer to ASX Announcement dated 8 December 2022.

Forward-Looking Statement

This ASX announcement may include forward-looking statements. These forward-looking statements are not historical facts but rather are based on Latin Resources Ltd.'s current expectations, estimates and assumptions about the industry in which Latin Resources Ltd operates, and beliefs and assumptions regarding Latin Resources Ltd.'s future performance. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks", "estimates", "potential" and similar expressions are intended to identify forward-looking statements. Forward-looking statements are only predictions and are not guaranteed, and they are subject to known and unknown risks, uncertainties and assumptions, some of which are outside the control of Latin Resources Ltd. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward-looking statements or other forecast. Actual values, results or events may be materially different to those expressed or implied in this ASX announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. Any forward-looking statements in this announcement speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and the ASX Listing Rules, Latin Resources Ltd does not undertake any obligation to update or revise any information or any of the forwardlooking statements in this announcement or any changes in events, conditions or circumstances on which any such forward looking statement is based.


Competent Person Statement – Salinas Lithium Project

The information in this report that relates to Geological Data and Exploration Results for the Salinas Lithium Project is based on information compiled by Mr Anthony Greenaway, who is a Member of the Australian Institute of Mining and Metallurgy. Mr Greenaway sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Greenaway consents to the inclusion in this report of the matters based on his information, and information presented to him, in the form and context in which it appears.

The information in this report that relates the Mineral Resource Estimate and exploration targets for the Salinas Lithium Project are based on the information compiled by Mr Marc-Antoine Laporte M.Sc., P.Geo, who is an employee of SGS Canada Ltd and a member of the L'Ordre des Géologues du Québec. He is a Senior Geologist for the SGS Geological Services Group and as more than 15 years of experience in industrial mineral, base and precious metals exploration as well as Mineral Resource evaluation and reporting. Mr Laporte sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to quality as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

APPENDIX 1 FIGURE 5 SALINAS LITHIUM PROJECT REGIONAL GEOLOGY AND TENURE

ASX:LRS | FRA:XL5

TABLE 1 COLINA DEPOSIT DRILL COLLAR TABLE

Hole	Easting	Northing	RL	Azi	Dip	EOH	Hole
ID	(m)	(m)	(m)	(deg)	(deg)	Depth (m)	Status
SADD085	807420.1	8214822.9	796.63	260	-68	450.40	Complete
SADD085	807518.7	8214429.7	803.92	260	-68	450.40	Complete
SADD080	807353.4	821429.7	824.90	260	-70	465.40	Complete
SADD087 SADD088					-62	450.20	
	807518.6	8214330.4	818.49	260			Complete
SADD089	807321.1	8214297.4	797.40	260	-64	448.85	Complete
SADD090	807318.9	8214593.3	752.81	260	-62	364.80	Complete
SADD091	807419.7	8214507	772.72	260	-60	334.90	Complete
SADD092	807294.9	8214386.6	783.89	260	-65 -65	385.90	Complete
SADD093	807416.4	8214411.5	788.96	260	-65	325.90	Complete
SADD094	807236.2	8214180.8	825.39	260	-72	298.05	Complete
SADD095	807133.4	8214164.4	824.33	260	-71	351.90	Complete
SADD096	807216.50	8214278.36	812.28	260	-65	322.80	Complete
SADD097	807909.17	8214765.41	769.03	260	-70	150.40	Complete
SADD098	807080.29	8214347.17	792.80	260	-66	304.85	Complete
SADD099	807098.10	8214258.99	808.47	260	-65	300.30	Complete
SADD100	807292.71	8214490.06	765.52	260	-61	316.75	Complete
SADD101	807035.37	8214144.92	824.08	260	-71	309.30	Complete
SADD102	807320.93	8214812.68	775.51	260	-65	256.70	Complete
SADD103	807825.64	8214716.06	763.58	260	-70	114.40	Complete
SADD104	807192.84	8214574.01	777.54	260	-66	309.40	Complete
SADD105	807188.46	8214373.65	791.20	260	-65	316.80	Complete
SADD106	806996.11	8214242.23	816.67	260	-65	324.30	Complete – assays pending
SADD107	807861.20	8214644.36	764.21	260	-70	457.90	Complete – assays pending
SADD108	807170.28	8214469.56	776.94	260	-66	300.20	Complete – assays pending
SADD109	806926.00	8214133.01	822.87	260	-70	229.70	Complete – assays pending
SADD110	807243.40	8214804.95	759.00	250	-58	237.30	Complete – assays pending
SADD111	807076.19	8214562.19	766.31	260	-66	241.70	Complete – assays pending
SADD112	806976.85	8214340.55	801.38	260	-64	313.82	Complete – assays pending
SADD113	806824.97	8214114.66	820.73	260	-70	45.35	Hole abandoned
SADD114	806880.33	8214216.42	816.12	260	-67	231.11	Complete – assays pending
SADD115	807058.83	8214450.90	785.08	260	-69	280.78	Complete – assays pending
SADD116	807853.46	8214910.43	753.58	260	-72	237.41	Complete – assays pending
SADD117	806952.89	8214431.38	786.00	260	-69	249.45	Complete – assays pending
SADD118	807124.47	8214661.10	768.05	260	-72	223.83	Complete – assays pending
SADD119	807923.11	8214922.74	745.07	260	-70	235.80	Complete – assays pending
SADD120	806778.09	8214204.53	812.06	260	-65	280.70	Complete – assays pending
SADD121	806874.10	8214319.78	795.27	260	-66	282.42	Complete – assays pending
SADD122	806824.97	8214114.66	820.73	260	-70	86.80	Hole abandoned
SADD123	806767.78	8214296.58	799.05	260	-66	301.70	Complete – assays pending
SADD124	806710.76	8214098.89	787.88	260	-70	171.25	Complete – assays pending
SADD125	807986.26	8214930.23	766.30	260	-70	240.17	Complete – assays pending
SADD126	806655.04	8214180.18	779.37	260	-65	180.15	Complete – assays pending

SADD127	807933.39	8215029.79	736.44	260	-65	242.08	Complete – assays pending
SADD128	806598.16	8214071.96	782.15	260	-75	169.80	Complete – assays pending
SADD129	806550.02	8214167.22	773.39	255	-65	130.60	Complete – assays pending
SADD130	806639.73	8214280.63	779.71	260	-69	181.95	Complete – assays pending
SADD131	806824.97	8214114.66	820.73	260	-70	141.40	Complete – assays pending
SADD132	806429.60	8214140.66	768.73	260	-65		In Progress
SADD133	807099.36	8214776.24	736.69	260	-70	201.28	Complete – assays pending
SADD134	806839.51	8214411.35	779.48	260	-65		In Progress
SADD135	806540.10	8214062.68	776.14	260	-55	109.85	Complete – assays pending

TABLE 2 COLINA DEPOSIT

NEW SIGNIFICANT DIAMOND DRILL INTERSECTIONS

INEW .						
Hole ID	From	To	Interval	Li ₂ O		
CARROOS	(m)	(m)	(m)	(%)		
SADD093	95.00	99.00	4.00	1.19		
SADD093	170.50	171.20	0.70	0.73		
SADD093	202.89	211.02	8.13	1.61		
Including:	204.00	210.00	6.00	1.88		
SADD093	233.00	238.57	5.57	1.56		
Including:	235.00	236.82	1.82	2.17		
SADD093	244.43	246.72	2.29	1.13		
SADD093	293.28	307.07	13.79	1.52		
Including:	294.20	300.00	5.80	1.67		
SADD094	77.00	78.62	1.62	1.36		
SADD094	195.05	205.00	9.95	0.77		
Including:	195.05	197.00	1.95	1.15		
And:	199.00	204.00	5.00	0.90		
SADD094	242.17	248.91	6.74	1.21		
Including:	243.00	247.00	4.00	1.72		
SADD094	267.32	273.45	6.13	1.51		
SADD095	175.48	184.42	8.94	1.32		
Including:	177.40	183.40	6.00	1.69		
SADD095	200.01	201.55	1.54	1.35		
SADD095	210.81	221.58	10.77	1.39		
Including:	212.00	220.00	8.00	1.52		
SADD095	315.29	319.00	3.71	1.80		
SADD096	75.46	76.56	1.10	1.22		
SADD096	89.38	90.15	0.77	0.66		
SADD096	235.47	247.82	12.35	1.42		
Including:	235.47	243.00	7.53	1.91		
SADD097	95.68	107.18	11.50	1.46		
Including:	102.00	106.11	4.11	2.23		
SADD097	114.30	133.90	19.60	1.42		
Including:	114.30	119.00	4.70	1.52		
SADD098	181.10	182.67	1.57	1.23		
SADD098	184.72	193.84	9.12	1.62		
Including:	184.72	190.00	5.28	1.82		
SADD098	267.63	276.55	8.92	1.15		
Including:	268.30	272.00	3.70	1.90		
SADD099	89.00	89.84	0.84	0.43		
SADD099	171.85	182.31	10.46	1.17		
Including:	173.00	177.00	4.00	1.54		
SADD099	246.25	257.00	10.75	1.17		

Hole ID	From	То	Interval	Li ₂ O
noie iD	(m)	(m)	(m)	(%)
Including:	246.25	248.00	1.75	1.67
And:	253.00	255.00	2.00	2.23
SADD100	31.86	35.20	3.34	1.20
SADD100	123.63	126.07	2.44	1.10
SADD100	188.60	192.65	4.05	1.53
SADD100	274.41	284.66	10.25	1.50
Including:	274.41	276.00	1.59	1.88
And:	279.00	283.00	4.00	1.70
SADD101	130.55	136.77	6.22	1.75
Including:	130.55	133.00	2.45	1.90
SADD101	143.94	148.50	4.56	1.05
Including:	143.94	146.70	2.76	1.45
SADD101	177.55	181.00	3.45	0.78
SADD101	214.00	220.00	6.00	1.17
Including:	214.00	217.00	3.00	1.38
SADD102	109.84	116.00	6.16	1.00
SADD102	169.00	171.77	2.77	1.18
SADD103	75.00	84.27	9.27	1.62
Including:	77.00	81.00	4.00	1.98
SADD104	150.00	151.85	1.85	0.95
SADD105	69.05	71.97	2.92	1.23
SADD105	87.37	88.52	1.15	0.78
SADD105	148.43	151.65	3.22	1.14
SADD105	211.89	219.70	7.81	1.54
Including:	214.00	216.00	2.00	2.77
SADD105	271.23	282.88	11.65	1.89
Including:	271.23	281.00	9.77	2.00
SADD106	124.00	132.49	8.49	1.39
Including:	125.00	129.00	4.00	1.68
SADD106	244.30	256.38	12.08	1.22
Including:	244.30	250.00	5.70	1.72
SADD107	50.16	74.90	24.74	1.23
Including:	58.00	68.00	10.00	1.72
SADD107	233.69	236.20	2.51	0.93
SADD108	177.38	181.25	3.87	1.50

^{*}Note: A nominal minimum Li_2O grade of 0.5% Li_2O has been used to define a 'significant intersection' over a nominal minimum intersection of 1.0m with a maximum internal dilution of 2.0 m. Refer to previous ASX announcements for details of previously reported drill holes.

APPENDIX 2 JORC CODE, 2012 EDITION – TABLE 1 SECTION 1 SAMPLING TECHNIQUES AND DATA (CRITERIA IN THIS SECTION APPLY TO ALL SUCCEEDING SECTIONS)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 The July 2021 stream sediment sampling program was completed by Latin Resources. Latin Resources stream sediment sampling: Stream sediment samples were taken in the field by Latin's geologists during field campaign using pre-set locations and procedures. All surface organic matter and soil were removed from the sampling point, then the active stream sediment was collected from five holes spaced 2.5 m using a post digger. Five subsamples were collected along 25 cm depth, homogenised in a plastic tarp and split into four parts. The chosen part (1/4) was screened using a 2 mm stainless steel sieve. A composite sample weighting 350-400g of the <2 mm fraction was poured in a labelled zip lock bag for assaying. Oversize material retained in the sieve was analyzed with hand lens and discarded. The other three quartiles were discarded, sample holes were filled back, and sieve and canvas were thoroughly cleaned. Photographs of the sampling location were taken for all the samples. Sample book were filled in with sample information and coordinates. Stream sediment sample locations were collected in the field using a hand-held GPS with +/-5m accuracy using Datum SIRGAS 2000, Zone 23 South) coordinate system. No duplicate samples were taken at this stage. No certified reference standards samples were submitted at this stage. Latin Resources Diamond Drilling: Diamond core has been sampled in intervals of ~1 m (up to 1.18 m) where possible, otherwise intervals less than 1 m have been selected based on geological boundaries. Geological boundaries have not been crossed by sample intervals. ½ core samples have been collected and submitted for analysis, with regu
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Latin Resources drilling is completed using industry standard practices. Diamond drilling is completed using HQ size coring equipment. Drilling techniques used at Salinas Project comprise: NTW Diamond Core (64.2mm diameter), standard tube to a depth of ~200- 250 m. BTW diamond core utilized for hole SADD031 from a depth of 309.10 m. Diamond core holes drilled directly from surface.

ASX:LRS | FRA:XL5

Criteria	JORC Code explanation	Commentary
Drill sample	Method of recording and assessing core and chip	 Initial drill rig alignment is carried out using Reflex TN14 alignment tool. Down hole survey was carried out by Reflex EZ-TRAC tool. Core orientation was provided by an ACT Reflex (ACT III) tool. All drill collars are surveyed using RTK DGPS. Latin Resources core is depth marked and orientated to
recovery	 sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 check against the driller's blocks, ensuring that all core loss is taken into account. Diamond core recovery is logged and captured into the database. Zones of significant core loss may have resulted in grade dilution due to the loss of fine material.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill cores have been geologically logged. Sampling is by sawing core in half and then sampling core on nominal 1m intervals. All core sample intervals have been photographed before and after sawing. Latin's geological logging is completed for all holes, and it is representative. The lithology, alteration, and structural characteristics of drill samples are logged following standard procedures and using standardised geological codes. Logging is both qualitative and quantitative depending on field being logged. All drill-holes are logged in full. Geological structures are collected using Reflex IQ Logger. All cores are digitally photographed and stored.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 For the 2021 stream sediment sampling program: All samples collected from field were dry due to dry season. To maximise representativeness, samples were taken from five holes weighting around 3 Kg each for a total of 15 Kg to be reduced to 350-400 g. Samples were dried, crushed and pulverized 250g to 95% at 150#. Any samples requiring splitting were split using a Jones splitter. For the 2022 diamond drilling program: Samples were crushed in a hammer mill to 75% passing -3mm followed by splitting off 250g using a Jones splitter and pulverizing to better than 95% passing 75 microns. Duplicate sampling is carried out routinely throughout the drilling campaign. The laboratory will carry out routine internal repeat assays on crushed samples. The selected sample mass is considered appropriate for the grain size of the material being sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument 	For the 2021 stream sediment sampling program: The stream sediment samples were assayed via ICM90A (fusion by sodium peroxide and finish with ICP-MS/ICP-OES) for a 56-element suite at the SGS Geosol Laboratorios located at Vespasiano/Minas Gerais, Brazil.

Criteria	JORC Code explanation	Commentary
	 make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 No control samples have been used at this stage. The internal laboratory controls (blanks, duplicates and standards) are considered suitable. For the 2022 diamond drilling program: Core samples are assayed via ICM90A (fusion by sodium peroxide and finish with ICP-MS/ICP-OES) for a 56-element suite at the SGS Geosol Laboratorios located at Vespasiano/Minas Gerais, Brazil. If lithium results are above 15,000ppm, the Lab analyze the pulp samples just for lithium through ICP90Q (fusion by sodium peroxide and finish with ICP/OES).
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Selected sample results which are considered to be significant will be subjected to resampling by the Company. This can be achieved by either reassaying of sample pulps, resplitting of coarse reject samples, or resplitting of core and reassaying. All Latin Resources data is verified by the Competent person. All data is stored in an electronic Access Database. Assay data and results is reported, unadjusted. Li₂O results used in the market are converted from Li results multiplying it by the industry factor 2.153.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Stream sediment sample locations and drill collars are captured using a handheld GPS. Drill collars are located using a handheld GPS. All GPS data points were later visualized using ESRI ArcGIS Software to ensure they were recorded in the correct position. The grid system used was UTM SIRGAS 2000 zone 23 South.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Stream sediment samples were taken every 200m between sampling points along the drainages which is considered appropriate for a first stage, regional work. Every sampling spot had a composite sample made of five subsamples spaced 2.5 m each along a channel for a 10 m length zone or a cross pattern with the same spacing of 2.5 m for the open valleys and braided channels. Due to the preliminary nature of the initial drilling campaign, drill holes are designed to test specific targets, with not set drill spacing.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Sampling is preferentially across the strike or trend of mineralised outcrops. Drilling has been designed to intersect the mapped stratigraphy as close to normal as possible.
Sample security	The measures taken to ensure sample security.	At all times samples were in the custody and control of the Company's representatives until delivery to the laboratory where samples were held in a secure enclosure pending processing.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The Competent Person for Exploration Results reported here has reviewed the field procedures used for sampling program at field and has compiled results from the original sampling and laboratory data.
		No External audit has been undertaken at this stage.

SECTION 2 REPORTING OF EXPLORATION RESULTS (CRITERIA LISTED IN THE PRECEDING SECTION ALSO APPLY TO THIS SECTION.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Exploration Licences: 830.578/2019, 830.579/2019, 830.580/2019, 30.581/2019, 830.582/2019, 830.691/2017, 832.515/2021 and the western portion of 831.799/2005 are 100% fully owned by Latin Resources Limited. Latin has lodged new applications for the following areas: 832.601/2022, 832.602/2022, 832.604/2022, 832.605/2022, 832.606/2022, 832.607/2022, 832.608/2022, 832.609/2022, 832.611/2022, 832.612/2022, 832.613/2022, 832.611/2022, 832.616/2022, 832.801/2022, 832.802/2022 & 832.804/2022. Latin has entered in separate exclusive option agreement to acquire 100% interest in the areas: 830.080/2022, 830.581/2019, 831.118/2008, 831.219/2017, 831.798/2015, 831.799/2005 (Second Part & Third Part), 833.881/2010 & 834.282/2007. The Company is not aware of any impediments to obtaining a licence to operate, subject to carrying out appropriate environmental and clearance surveys.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historic exploration was carried out on the area 830.080/2022 (Monte Alto) with extraction of gems (tourmaline and lepidolite), amblygonite, columbite and feldspar.
Geology	Deposit type, geological setting and style of mineralisation.	Salinas Lithium Project geology comprises Neoproterozoic age sedimentary rocks of Araçuaí Orogen intruded by fertile Li-bearing pegmatites originated by fractionation of magmatic fluids from the peraluminous S-type post-tectonic granitoids of Araçuaí Orogen. Lithium mineralisation is related to discordant swarms of spodumene-bearing tabular pegmatites hosted by biotite-quartz schists.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	All drill hole summary location data is provided in Appendix 1 to this report and is accurately represented in appropriate location maps and drill sections where required.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high-grades) and cut-off grades are usually Material and should be stated.	 Sample length weighted averaging techniques have been applied to the sample assay results. Where duplicate core samples have been collected in the field, results for duplicate pairs have been averaged.

ASX:LRS | FRA:XL5

Criteria	JORC Code explanation	Commentary
	 Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 A nominal minimum Li₂O grade of 0.4% Li₂O has been used to define a 'significant intersection'. No grade top cuts have been applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Drilling is carried out at right angles to targeted structures and mineralised zones where possible. Drill core orientation is of a high quality, with clear contact of pegmatite bodies, enabling the calculation of true width intersections.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	The Company has released various maps and figures showing the sample results in the geological context.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high-grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	All analytical results for lithium have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All information that is considered material has been reported, including stream sediment sampling results, Drilling results geological context, etc. Sighter metallurgical test work was undertaken on approximately 44kg of drill core sourced from drill hole SADD023 (26.99m: 94.00-120.88m) and submitted to independent laboratories SGS GEOSOL Laboratories in Belo Horizonte Brazil. Test work included crushing, size fraction analysis and HLS separation to ascertain the amenability of the Colina Project spodumene pegmatite material to DMS treatment routes.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Latin plans to undertake additional reconnaissance mapping, infill stream sediment and soil sampling at Salinas South Prospect. Follow-up infill and step-out drilling will be undertaken based on results. Additional metallurgical processing test work on drill core form the Colina Prospect.