

ASX:LRS | FRA:XL5

ASX Announcement

7 June 2023

COLINA LITHIUM DEPOSIT RESOURCE UPGRADE IMMINENT

All assay results received, on target for June 2023 release

HIGHLIGHTS

- Major resource definition drilling program at the Colina Lithium Deposit in Brazil, is now complete
 with all assay results received from the laboratory.
- Independent consultants SGS Geological Services in Canada have commenced the mineral resource update, on schedule for a June release.
- A total of 135 diamond drill holes for 39,033m have been completed as part of the 65,000m Salinas infill drilling campaign.
- Infill drilling confirms the Colina mineral resource system continuity to the south-west, with the system remaining wide open.
- Final significant intercepts from the MRE drilling program include:
 - O SADD093: 8.16m @ 1.36% Li₂O from 318.00m
 - O SADD096: 13.80m@ 1.35% Li₂O from 283.30m
 - O SADD107: 22.00m@ 0.98% Li₂O from 309.00m
 - O SADD112: 8.36m @ 1.50% Li₂O from 243.59m
 - O SADD114: 16.93m@ 1.36% Li₂O from 187.07m
 - O SADD119: 14.70m@ 1.72% Li₂O from 132.94m
 - O SADD119: 8.48m@ 1.74% Li₂O from 209.84m
 - O SADD125: 14.94m @ 1.01% Li₂O from 166.00m
 - O SADD133: 11.11m @ 0.97% Li₂O from 134.44m
 - O SADD134: 13.24m @ 1.89% Li₂O from 168.07m
- Eight diamond drilling rigs will remain on site, continuing to operate throughout 2023, focusing on
 infill drilling to increase the MRE JORC classification, extending the Colina Lithium Deposit to the
 south-west where the high-grade mineralisation remains open along strike and to test newly
 identified high priority regional targets.
- Highly anticipated results from the extensional and regional programs will be reported as they arrive.

Latin Resources Limited (ASX: LRS) ("Latin" or "the Company") is pleased to provide an update on the Colina resource definition drilling program, now complete at the Company's 100% owned Salinas Lithium Project ("Salinas") in Brazil.

Latin Resources' VP of Operations – Americas, Tony Greenaway commented:

"With all the planned drilling for our MRE upgrade now complete and assay results received, SGS has commenced the resource estimation process and this is on track to be released in June. We are all eagerly awaiting the outcome of this process, as we believe that we will see a significant expansion in the JORC resource for Colina, given the exceptional results we have been seeing in our drilling this year.

"Our drilling rigs are still turning on site, with all eight rigs operational. This next phase of drilling will focus on the continued expansion of the Colina deposit to the south-west, where our high-grade mineralisation remains open, infill drilling to increase the JORC classification of the defined resources, and testing of new areas along strike, where our regional teams have identified multiple new target areas through mapping and geochemical sampling."

Resource definition drilling

The Company's diamond resource definition drilling campaign ("**Program**"), aimed at providing sufficient drill coverage for the Colina Mineral Resource Estimate ("**MRE**"), is now complete, with all assay results received from the laboratory.

The successful Program comprised a total of 135 drill holes (*Figure 1*) for 39,033m of drill core, which represents an additional 88 holes and 28,505m over and above the 47 holes and 10,528m used in the Company's maiden MRE released on 8 December 2022.

SGS Geological Services ("**SGS**") in Canada has been appointed to undertake the independent update of the Colina MRE, which is expected to be completed in late June.

The Program at Colina had the main objective of increasing the overall resource base at Colina along with increasing the confidence level of the lithium orebody by converting a significant amount of Inferred Resource into the Indicated Resource category. In doing so, the Company has developed and supplied SGS with updated wireframes of the Colina pegmatite mineralisation, which are expected to significantly expand the existing 13.3Mt @1.2% Li₂O resource¹ (2.08Mt @ 1.21% Li₂O Indicated and 11.17Mt @ 1.21% Li₂O Inferred) by incorporating new high-grade pegmatite swarms encountered to the west and southwest of the Colina Deposit.

Final assay results from the Program have been successful in confirming both the grade consistency and pegmatite continuity, with the Colina Deposit growing significantly in size with each step-out drillhole.

The Company remains confident that the balance of the 65,000m drilling campaign, which is expected to be completed in late 2023, will unlock further value from the Colina Deposit.

All drillhole collars and significant intercepts that will comprise the Colina MRE update are tabulated in Appendix 1.

The Maiden Mineral Resource Estimate for Colina comprises:

Table 1: Maiden Mineral Resource Estimate for the Colina Lithium Deposit (reported above a 0.5% Li₂O cut-off)

Deposit	Resource Category	Grade Cut-off	Tonnes (Mt)	Grade (Li₂O %)	Li₂O (Kt)	Contained LCE (Kt)
Calina	Indicated	0.50	2.08	1.21	25.1	60
Colina	Inferred	0.50	11.17	1.21	135.2	334
	Total		13.25	1.21	160.3	396

*NOTE:

- 1. All figures are rounded to reflect the relative accuracy of the estimate and numbers may not add due to rounding.
- 2. Mineral Resources have been reported at a 0.5% Li₂O cut-off.
- 3. Effective date November 25th 2022, refer to ASX Announcement dated 8 December 2022.
- 4. The estimate of Mineral Resources may be materially affected by environmental, permitting, legal, title, taxation, sociopolitical, marketing or other relevant issues.

¹ Refer to ASX Announcement dated 8 December 2023

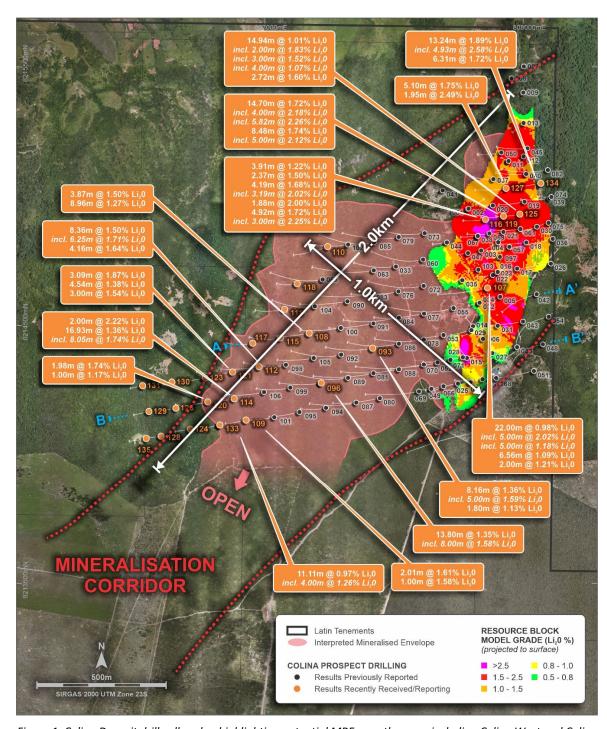


Figure 1: Colina Deposit drill collar plan highlighting potential MRE growth areas, including Colina West and Colina South

P +61 8 6117 4798

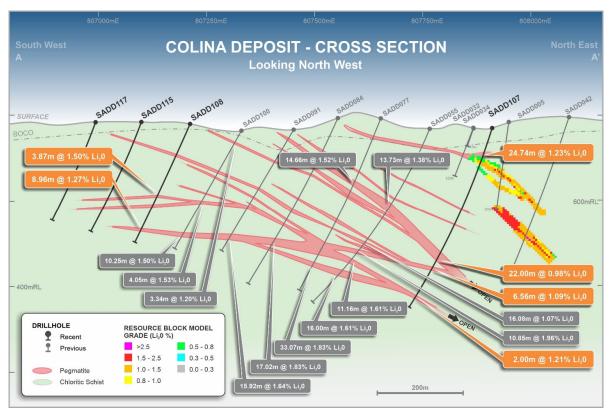


Figure 2: Drill section A-A' showing the existing Colina MRE block model, and selected pegmatite intersections

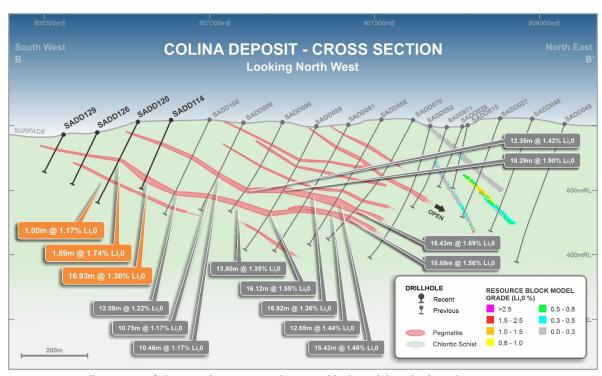


Figure 3: Drill section B-B' showing the existing Colina MRE block model, and selected pegmatite intersections

Next steps

- Strong indications are present for continuation of the pegmatite mineralisation beyond the Colina MRE area and toward the south-west, with the Company focusing drilling efforts on these areas throughout the remainder of 2023.
- Drilling at Colina will continue to operate at full capacity following the MRE update, with all eight diamond drilling rigs remaining on site through the balance of 2023, fulfilling the Company's commitment to drill 65,000m. The focus of the drilling will now be split as follows:
 - Ongoing systematic step-out drilling to the southwest of Colina, where the high-grade lithium mineralisation remains open.
 - O Targeted large diameter PQ drilling to provide material for metallurgical pilot plant scale Dense Media Separation ("**DMS**").
 - O Drill testing of several new target areas identified within the 'Colina Corridor' through ongoing regional exploration mapping and geochemical sampling.
- Following the announcement on 23 March 2023, the Company confirms the Preliminary Economic Assessment ("PEA") will be defined further after the release of the Colina MRE update in June 2023, allowing the updated MRE to be incorporated in the PEA study metrics.
- The Company still intends to move directly to a Definitive Feasibility Study ("DFS"), immediately
 following the release of the PEA, and with progressing other works including large scale DMS test work
 of the Colina lithium ore.
- The Company is debt free and currently has cash in the bank of \$50.2 million at 30 April 2023.

Ends

This Announcement has been authorised for release to ASX by the Board of Latin Resources.

For further information please contact:

Chris Gale Fiona Marshall

Managing Director Senior Communications Advisor Latin Resources Limited White Noise Communications

+61 8 6117 4798 +61 400 512 109

fiona@whitenoisecomms.com

info@latinresources.com.au www.latinresources.com.au

About Latin Resources

Latin Resources Limited (ASX: LRS) is an Australian-based mineral exploration company, with projects in South America and Australia, that is developing mineral projects in commodities that progress global efforts towards Net Zero emissions.

The Company is focused on its flagship Salinas Lithium Project in the pro-mining district of Minas Gerais Brazil, where the Company has defined a Maiden Mineral Resource Estimate of 13.3Mt @ 1.2% Li $_2$ O with an exploration target of 22Mt at its Colina Deposit*. Latin has appointed leading mining consultant SGS Geological Services to undertake feasibility and metallurgical studies at the Salinas Lithium Project. Latin also holds the Catamarca Lithium Project in Argentina and through developing these assets, aims to become one of the key lithium players to feed the world's insatiable appetite for battery metals.

The Australian projects include the Cloud Nine Halloysite-Kaolin Deposit. Cloud Nine Halloysite is being tested by CRC CARE aimed at identifying and refining halloysite usage in emissions reduction, specifically for the reduction in methane emissions from cattle.

*For full details of the Colina Deposit MRE and Exploration Target, please refer to ASX Announcement dated 8 December 2022.

Forward-Looking Statement

This ASX announcement may include forward-looking statements. These forward-looking statements are not historical facts but rather are based on Latin Resources Ltd.'s current expectations, estimates and assumptions about the industry in which Latin Resources Ltd operates, and beliefs and assumptions regarding Latin Resources Ltd.'s future performance. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks", "estimates", "potential" and similar expressions are intended to identify forward-looking statements. Forward-looking statements are only predictions and are not quaranteed, and they are subject to known and unknown risks, uncertainties and assumptions, some of which are outside the control of Latin Resources Ltd. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward-looking statements or other forecast. Actual values, results or events may be materially different to those expressed or implied in this ASX announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. Any forward-looking statements in this announcement speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and the ASX Listing Rules, Latin Resources Ltd does not undertake any obligation to update or revise any information or any of the forwardlooking statements in this announcement or any changes in events, conditions or circumstances on which any such forward looking statement is based.

Competent Person Statement – Salinas Lithium Project

The information in this report that relates to Geological Data and Exploration Results for the Salinas Lithium Project is based on information compiled by Mr Anthony Greenaway, who is a Member of the Australian Institute of Mining and Metallurgy. Mr Greenaway sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Greenaway consents to the inclusion in this report of the matters based on his information, and information presented to him, in the form and context in which it appears.

The information in this report that relates the Mineral Resource Estimate and exploration targets for the Salinas Lithium Project are based on the information compiled by Mr Marc-Antoine Laporte M.Sc., P.Geo, who is an employee of SGS Canada Ltd and a member of the L'Ordre des Géologues du Québec. He is a Senior Geologist for the SGS Geological Services Group and as more than 15 years of experience in industrial mineral, base and precious metals exploration as well as Mineral Resource evaluation and reporting. Mr Laporte sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to quality as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

APPENDIX 1 FIGURE 4 SALINAS LITHIUM PROJECT REGIONAL GEOLOGY AND TENURE

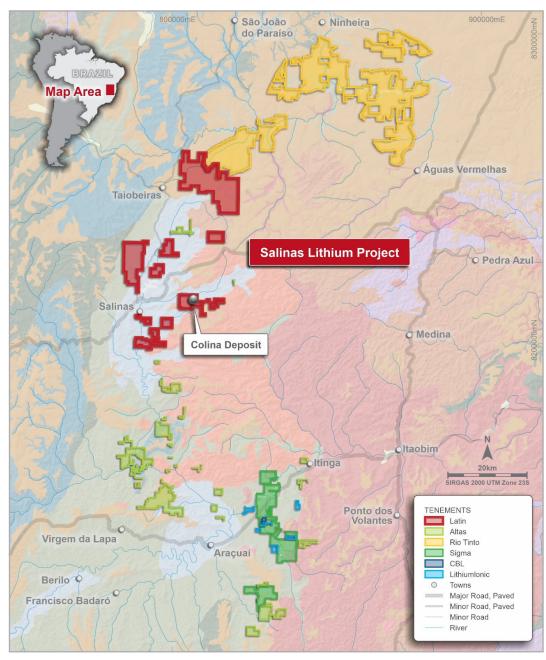


TABLE 2
COLINA MINERAL RESOURCE DRILL COLLAR TABLE

Complete
Complete
Complete Complete Complete Complete Complete Complete Complete Complete
Complete Complete Complete Complete Complete Complete Complete Complete
Complete Complete Complete Complete Complete Complete Complete
Complete Complete Complete Complete Complete
Complete Complete Complete Complete
Complete Complete Complete
Complete Complete
Complete
Complete

6455640	007000 00	0044545.04	700.50	260		254.40	
SADD043	807999.09	8214515.04	799.58	260	-70	351.40	Complete
SADD044	807704.29	8214820.94	760.30	260	-70	147.40	Complete
SADD045	808015.65	8215184.88	678.18	260	-70	300.75	Complete
SADD046	807975.65	8214415.54	819.25	260	-70	366.50	Complete
SADD047	807786.03	8214780.06	755.40	260	-68	104.00	Complete
SADD048	808076.24	8214427.01	804.68	260	-70	463.80	Complete
SADD049	807643.68	8214255.09	827.94	260	-80	132.45	Complete
SADD050	807914.53	8215168.78	672.24	260	-68	210.35	Complete
SADD051	808041.47	8214324.20	821.31	260	-54	435.10	Complete
SADD052	807668.17	8214357.01	797.38	260	-70	450.40	Complete
SADD053	807690.88	8214462.62	782.31	260	-75	321.30	Complete
SADD054	808097.82	8214534.02	774.25	260	-70	451.90	Complete
SADD055	807730.00	8214567.00	769.01	260	-65	499.10	Complete
SADD056	807889.48	8213891.18	832.94	260	-60	432.20	Complete
SADD057	807946.30	8214803.64	760.90	260	-74	270.40	Complete
SADD058	807658.54	8213556.51	834.43	260	-60	448.70	Complete
SADD059	807868.86	8214855.95	765.78	260	-74	265.85	Complete
SADD060	807612.10	8214754.97	789.68	260	-72	460.90	Complete
SADD061	807989.27	8214873.20	767.41	262	-70	280.70	Complete
SADD062	807795.91	8214280.46	828.09	260	-73	281.35	Complete
SADD063	807421.09	8214713.01	786.42	260	-66	450.20	Complete
SADD064	807816.90	8214083.13	831.30	260	-60	450.10	Complete
SADD065	807223.19	8214678.29	752.10	260	-72	450.30	Complete
SADD066	807691.10	8214264.77	827.26	260	-77	270.70	Complete
SADD067	807823.89	8214845.65	759.23	260	-50	22.25	Abandoned
SADD068	807894.94	8214297.30	827.82	260	-71	270.10	Complete
SADD069	807595.90	8214245.28	828.09	260	-70	450.40	Complete
SADD070	807614.59	8214348.47	815.58	260	-62	454.70	Complete
SADD071	807717.80	8214366.77	794.16	260	-72	268.85	Complete
SADD072	807613.98	8214652.55	790.98	260	-70	454.75	Complete
SADD073	807617.89	8214857.02	783.15	260	-70	450.40	Complete
SADD074	808108.60	8214997.50	749.15	260	-84	450.35	Complete
SADD075	808099.00	8214897.54	772.11	260	-79	450.40	Complete
SADD076	807516.68	8214630.87	802.84	260	-70	448.90	Complete
SADD077	807615.69	8214546.12	794.40	260	-67	449.90	Complete
SADD078	807614.98	8214446.36	800.50	260	-70	450.40	Complete
SADD079	807517.52	8214841.28	797.60	260	-70	448.80	Complete
SADD080	807443.97	8214218.96	826.75	260	-70	459.35	Complete
SADD081	807420.14	8214314.78	804.43	260	-62	459.30	Complete
SADD081	808094.70	8215100.55	719.73	260	-72	450.35	Complete
SADD082	807416.02	8214624.38	775.00	260	-65	450.15	Complete
SADD084	807518.11	8214530.09	797.87	260	-65	451.55	Complete
SADD084 SADD085	807422.41	8214821.06	797.87	260	-68	450.40	Complete
SADD085	807518.196	8214821.00	803.61	260	-68	451.65	Complete
SADD080 SADD087	807353.368	821429.9	824.58	260	-70	465.40	Complete
SADD087 SADD088	807518.094	8214330.269	818.12	260	-62	450.20	Complete
SADD088 SADD089	807320.784	8214330.269 8214297.361	797.65	260	-62 -64	450.20	Complete
							·
SADD090	807318.357	8214593.277	752.99	260	-62	364.80	Complete

SADD091	807420.466	8214507.991	772.65	260	-60	334.90	Complete
SADD091 SADD092	807294.819	8214385.411	783.45	260	-65	385.90	Complete
SADD092 SADD093	807416.104	8214411.8	790.63	260	-65	354.80	Complete
SADD093 SADD094	807237.399	8214181.916	823.44	260		298.80	•
					-72 -71	351.40	Complete
SADD095	807134.481	8214165.086	822.42	260	-71		Complete
SADD096	807216.45	8214278.29	809.85	260	-65	322.80	Complete
SADD097	807908.99	8214765.27	768.89	260	-70	150.40	Complete
SADD098	807080.26	8214347.22	792.63	260	-66	304.85	Complete
SADD099	807097.99	8214258.93	806.69	260	-65	300.30	Complete
SADD100	807292.06	8214489.87	765.48	260	-61	316.75	Complete
SADD101	807034.05	8214144.62	821.99	260	-71	309.30	Complete
SADD102	807320.71	8214812.63	775.52	260	-65	256.70	Complete
SADD103	807825.14	8214716.05	763.69	260	-70	114.40	Complete
SADD104	807192.56	8214574.09	777.19	260	-66	309.40	Complete
SADD105	807188.31	8214373.72	790.73	260	-65	316.80	Complete
SADD106	806995.71	8214241.98	816.55	260	-65	324.30	Complete
SADD107	807861.18	8214644.33	763.91	260	-70	457.90	Complete
SADD108	807170.06	8214469.62	776.08	260	-66	300.20	Complete
SADD109	806925.58	8214133.02	822.66	260	-70	229.70	Complete
SADD110	807242.78	8214804.45	759.25	250	-58	237.30	Complete
SADD111	807075.96	8214562.03	766.32	260	-66	241.70	Complete
SADD112	806976.73	8214340.54	800.93	260	-64	313.82	Complete
SADD113	806825.53	8214114.96	818.80	260	-70	45.35	Complete
SADD114	806880.02	8214216.37	815.59	260	-67	231.11	Complete
SADD115	807058.89	8214450.86	784.69	260	-69	280.78	Complete
SADD116	807853.20	8214910.54	752.79	260	-72	237.41	Complete
SADD117	806952.51	8214431.89	783.97	260	-69	249.45	Complete
SADD118	807123.87	8214660.96	767.46	260	-72	223.83	Complete
SADD119	807922.91	8214922.70	744.92	260	-70	235.80	Complete
SADD120	806777.63	8214204.87	810.21	260	-65	280.70	Complete
SADD121	806874.05	8214320.37	793.36	260	-66	282.42	Complete
SADD122	806825.53	8214114.96	818.80	260	-70	86.80	Complete
SADD123	806767.19	8214297.06	797.19	260	-66	301.70	Complete
SADD124	806710.69	8214099.51	786.20	260	-70	171.25	Complete
SADD125	807986.23	8214930.23	766.41	260	-70	261.15	Complete
SADD126	806654.05	8214180.67	777.51	260	-65	180.15	Complete
SADD127	807935.33	8215029.40	737.12	260	-65	252.08	Complete
SADD128	806597.75	8214072.14	780.43	260	-75	169.80	Complete
SADD129	806549.77	8214167.18	771.90	255	-65	130.60	Complete
SADD130	806639.41	8214280.54	777.98	260	-69	181.85	Complete
SADD131	806525.75	8214265.86	757.27	260	-70	141.40	Complete
SADD132	806536.76	8213552.59	824.89	260	-65	562.30	Complete
SADD133	806826.32	8214115.00	818.86	260	-70	201.28	Complete
SADD134	808067.77	8215049.74	745.29	260	-65	317.08	Complete
SADD135	806539.68	8214062.84	774.45	260	-55	109.85	Complete
2ADD132	800539.68	8214062.84	//4.45	200	-55	109.85	Complete

TABLE 3 COLINA MINERAL RESOURCE PROGRAM ALL SIGNIFICANT DIAMOND DRILL INTERSECTIONS

ALL SIGNIFICANT DIAMOND DRILL INTERSECTIONS						
Hole ID	From	То	Interval	Li₂O		
Hole ID	(m)	(m)	(m)	(%)		
SADD001	24.22	26.22	2.00	0.56		
SADD001	83.82	88.13	4.31	2.22		
SADD002	48.50	54.95	6.45	0.78		
SADD002	111.30	119.43	8.13	2.00		
Including:	112.30	113.30	1.00	3.22		
SADD002	115.30	118.30	3.00	2.20		
SADD003	65.65	82.70	17.05	0.95		
Including:	69.65	73.65	4.00	1.96		
SADD003	98.35	103.50	5.15	1.31		
Including:	98.35	100.25	1.90	2.13		
SADD004	119.80	137.18	17.38	1.46		
Including:	120.95	131.15	10.20	2.05		
Including:	120.95	124.00	3.05	2.26		
SADD004	127.00	129.00	2.00	3.07		
SADD005	125.40	129.65	4.25	1.32		
Including:	127.55	128.60	1.05	2.65		
SADD005	159.10	163.10	4.00	1.36		
Including:	161.10	162.10	1.00	1.92		
SADD006	208.80	229.90	21.10	1.26		
Including:	210.90	224.90	14.00	1.69		
Including:	214.90	217.90	3.00	2.28		
SADD007		No Significo	ant results¹			
SADD008		No Significa	ant results¹			
SADD009		No Significo	ant results¹			
SADD010		No Significo	ant results¹			
SADD011	49.90	51.00	1.10	1.15		
SADD011	60.82	63.95	3.13	1.48		
including:	60.82	61.95	1.13	1.73		
SADD012	64.80	69.03	4.23	1.52		
Including:	64.80	66.90	2.10	2.27		
SADD012	97.95	102.50	4.55	0.98		
Including:	98.86	101.59	2.73	1.32		
SADD012	110.05	111.60	1.55	1.37		
Including:	110.05	110.85	0.80	2.12		
SADD013	36.75	41.10	4.35	1.76		
Including:	36.75	40.05	3.30	2.08		
SADD014		No Significo	ant results ¹			
SADD015	97.87	100.87	3.00	0.53		
SADD015	183.53	184.50	0.97	1.57		
SADD015	189.78	192.88	3.10	0.70		
•	-					

CARROLE	0444	110.30	25.24	4.35
SADD016	94.14	119.38	25.24	1.25
Including:	97.00	104.00	7.00	1.52
And:	109.00	118.19	9.19	1.51
SADD017	133.00	141.87	8.87	1.09
Including:	137.00	138.00	1.00	2.02
And:	144.00	145.00	1.00	1.85
SADD017	173.29	187.00	13.86	1.33
Including:	178.00	185.00	7.00	1.93
SADD018	133.84	143.00	9.16	1.68
Including:	135.00	141.00	6.00	2.16
Including:	137.00	138.00	1.00	3.52
SADD018	146.00	147.00	1.00	0.75
SADD018	149.00	150.00	1.00	1.30
SADD018	189.00	205.00	16.00	1.29
Including:	190.00	198.00	8.00	1.98
Including:	190.00	191.00	1.00	3.06
And:	196.00	197.00	1.00	4.22
SADD019	117.12	119.73	2.61	0.80
SADD019	140.94	146.78	5.84	1.88
SADD019	164.57	166.15	1.58	0.77
SADD019	185.13	187.44	2.31	2.02
Including:	186.00	187.44	1.44	2.66
SADD019	206.24	218.20	11.96	1.62
Including:	210.00	218.20	8.20	1.82
SADD019	237.30	246.73	9.43	1.56
Including:	240.00	244.00	4.00	2.42
SADD020	94.05	95.10	1.05	0.74
SADD020	97.97	100.00	2.03	0.98
SADD020	120.33	122.68	2.35	3.57
SADD020	143.77	151.35	7.58	1.45
Including:	144.40	146.00	1.60	2.45
SADD020	207.08	214.54	7.46	1.19
SADD020	120.60	141.00	20.40	0.97
Including:	120.60	131.00	10.40	1.25
SADD021	188.93	194.74	5.81	1.53
SADD021 SADD022	71.00	91.09	20.09	1.35
	73.00			
Including:		75.00	2.00	2.17
And:	80.00	82.00	2.00	2.32
SADD023	94.00	120.88	26.88	1.40
Including:	97.00	115.00	18.00	1.61
SADD024	186.00	196.00	10.00	1.05
Including:	190.00	195.00	5.00	1.61
SADD024	293.00	295.00	2.00	0.64
SADD025	190.00	192.00	2.00	0.89
SADD026	307.00	335.80	28.80	1.16

Including	221.00	225 90	14.90	1 51
Including:	321.00	335.80	14.80	1.51
SADD027	197.80	199.95	2.15	0.67
SADD027	219.64	221.30	2.51	0.94
SADD028			ant results ¹	
SADD029	183.55	187.85	4.30	1.08
SADD030	149.00	161.00	12.00	1.82
Including:	149.00	157.00	8.00	2.31
SADD030	209.00	229.12	20.19	1.45
Including:	213.00	223.00	10.00	1.88
SADD031	201.00	207.00	7.00	1.13
Including:	201.00	203.00	2.00	2.20
SADD031	286.30	292.45	6.15	1.56
Including:	289.30	292.45	3.15	2.12
SADD031	306.00	314.45	8.45	3.57
Including:	309.10	313.27	4.17	5.79
SADD032		No Signific	ant results¹	
SADD033	210.53	122.31	1.78	1.33
SADD033	197.78	200.00	2.22	0.92
SADD033	210.44	213.15	2.71	1.11
SADD033	259.78	262.00	2.22	1.05
SADD033	275.38	277.05	1.67	1.36
SADD033	321.15	339.86	18.71	1.32
Including:	322.00	326.00	4.00	1.94
And:	334.00	338.00	4.00	1.58
SADD034		No Signific	ant results¹	
SADD035			ant results¹	
SADD036	179.30	185.00	5.70	0.87
Including:	181.00	183.00	2.00	1.66
SADD036	356.00	357.00	1.00	1.08
SADD037	76.54	78.22	1.68	0.61
SADD037	131.90	132.55	0.65	1.13
SADD037	195.11	198.19	3.08	1.22
Including:	196.00	198.19	2.19	1.56
SADD038	76.50	81.00	4.50	1.47
Including:	77.00	79.00	2.00	2.54
SADD038	92.31	103.22	10.91	1.52
Including:	93.00	98.00	5.00	2.01
SADD038	117.87	119.43	1.56	0.97
SADD038 SADD039	129.76	137.95	8.19	1.61
Including:	133.00	137.00	4.00	2.21
SADD039	199.00	201.00	2.00	1.67
SADD039	245.00	270.00	25.00	1.47
Including:	255.00	265.00	10.00	1.78
SADD040	91.50	92.18	0.68	1.03
SADD040	99.28	101.05	1.77	1.14

T		T	T	
SADD040	148.21	155.62	7.41	1.61
Including:	153.00	155.62	2.62	2.37
SADD040	198.64	205.78	7.14	1.61
SADD040	231.74	238.74	7.00	1.21
Including:	233.74	235.74	2.00	2.00
SADD042	302.30	311.00	8.70	2.16
Including:	302.30	308.00	5.70	2.66
SADD043	230.55	231.51	0.96	1.87
SADD043	275.00	283.18	8.18	0.93
Including:	280.00	282.00	2.00	1.79
SADD043	285.13	285.86	0.73	1.76
SADD044	75.50	76.30	0.80	1.17
SADD045	67.00	69.00	2.00	1.89
SADD045	84.27	88.29	4.02	1.73
Including:	84.27	87.30	3.03	2.03
SADD045	112.42	114.71	2.29	0.36
SADD045	214.00	215.19	1.19	0.74
SADD045	297.70	299.70	2.00	0.51
SADD047	31.05	36.85	5.80	0.54
SADD047	68.43	78.66	10.23	1.59
SADD047	69.20	75.00	5.80	1.82
SADD048		No Significa	ant results¹	
SADD049		No Significa		
SADD050	28.64	30.60	1.96	1.69
SADD051		No Significo	ant results*	
SADD052	83.80	86.18	1.38	1.27
SADD053	86.64	87.50	0.86	0.50
SADD053	193.63	196.63	3.00	1.49
SADD053	289.58	303.58	14.00	1.35
Including:	289.58	294.58	5.00	1.84
SADD054		No Significa		
SADD055	47.24	48.27	1.00	0.71
SADD055	196.57	197.94	1.37	0.84
SADD055	200.19	213.92	13.73	1.38
Including:	202.00	212.00	10.00	1.79
SADD055	216.62	217.40	0.78	1.85
SADD055	223.97	229.23	5.26	1.05
SADD055	234.91	238.91	3.99	1.81
SADD055	306.69	322.77	16.08	1.07
SADD055	322.15	343.00	10.85	1.96
Including:	333.00	338.00	5.00	2.44
SADD055	360.17	371.33	11.16	1.61
Including:	360.17	363.00	2.83	2.12
and:	367.00	370.00	3.00	2.12
SADD055	393.60	409.60	16.00	1.61
CCOUUNC	333.00	403.00	10.00	1.01

Indudina	305.60	402.00	7.00	1.01
Including:	395.60	402.60	7.00	1.91
SADD055	434.78	437.03	2.25	1.21
SADD055	468.08	470.10	1.00	0.84
SADD056			ant results ¹	
SADD057	105.00	106.70	1.70	1.34
SADD057	136.99	157.16	20.17	1.66
SADD057	149.00	156.00	7.00	2.14
SADD058		No Signific	ant results¹	
SADD059	81.41	88.38	6.97	1.96
SADD059	109.90	124.60	14.70	1.27
Including:	81.41	88.38	6.97	1.96
SADD059	195.31	203.49	8.18	1.28
SADD060	84.75	87.04	2.29	1.71
SADD060	182.70	184.58	1.88	1.85
SADD060	203.69	205.65	1.96	0.83
SADD060	228.00	230.84	2.84	0.92
SADD060	247.40	250.29	2.89	1.33
SADD060	252.00	253.55	1.55	0.56
SADD060	350.09	366.05	15.96	1.56
SADD060	370.62	372.03	1.41	1.64
SADD060	384.42	538.42	2.00	1.04
SADD061	119.24	121.00	1.76	0.92
SADD061	122.00	125.00	3.00	0.83
SADD061	126.00	128.00	2.00	0.74
SADD061	159.00	179.70	20.70	1.51
Including:	163.00	165.00	2.00	1.96
And:	168.00	173.00	5.00	2.27
And:	160.00	173.00	13.00	1.70
SADD061	203.00	206.00	3.00	1.30
SADD062	149.51	159.51	10.00	1.13
Including:	157.51	159.51	2.00	1.70
And:	150.51	156.51	6.00	1.20
		129.15	4.03	1.60
SADD063	125.12			
SADD063	130.26	131.60	1.34	1.15
SADD063	189.65	190.35	0.70	1.86
SADDO63	199.12	200.21	1.09	0.56
SADD063	267.37	274.16	6.79	1.52
Including:	267.37	270.00	2.63	2.12
SADD064		1	ant results¹	
SADD065	184.00	187.00	3.00	1.05
SADD065	368.00 370.20 2.20 0.83			0.83
SADD066	No Significant results ¹			
SADD067	Hole Abandoned - Not Sampled			
SADD068	248.47	253.49	5.02	2.34
SADD069	207.00	211.00	4.00	1.46

\$ADD070	139.00	141.00	2.00	0.77
SADDO70				
SADDO70	192.97	198.00	5.03	1.64
SADD070	292.03	297.55	5.52	1.50
SADD070	323.57	340.00	16.43	1.69
Including:	324.72	333.00	8.28	2.14
SADD070	356.91	375.80	18.89	1.56
Including:	362.00	373.00	11.00	1.86
And:	362.00	365.00	3.00	2.31
SADD071	221.60	232.00	10.40	1.01
Including:	224.00	231.00	7.00	1.31
SADD072	168.34	170.92	2.58	1.36
SADD072	174.87	185.57	10.70	1.38
Including:	174.87	176.87	2.00	1.73
And:	178.87	180.87	2.00	1.81
SADD072	231.22	232.50	1.28	0.66
SADD072	238.76	241.31	2.55	1.03
SADD072	247.81	249.33	1.52	0.81
SADD072	295.00	298.12	3.12	1.56
SADD072	333.82	360.69	26.87	1.62
Including:	335.00	343.00	8.00	2.27
And:	335.00	358.00	23.00	1.78
SADD072	443.00	444.00	1.00	0.81
SADD073	278.90	288.65	9.75	1.51
Including:	283.00	288.65	5.65	1.81
SADD073	290.80	292.10	1.30	0.79
SADD073	322.11	324.40	2.29	1.07
SADD073	350.00	355.82	5.82	1.29
SADD073	382.00	388.66	6.66	1.03
SADD073	137.48	140.53	3.05	2.11
SADD074 SADD074				
	283.13	312.00	28.87	1.29 1.66
Including:	307.00	311.00	4.00	
SADD075	159.44	172.52	13.08	1.20
Including:	159.44	163.00	3.56	1.48
And:	166.00	171.00	5.00	1.35
SADD075	336.40	349.67	13.27	1.65
Including:	337.40	342.40	5.00	2.74
SADD075	360.50	370.86	10.36	1.07
Including:	360.50	365.50	5.00	1.50
SADD076	129.71	130.58	0.87	0.99
SADD076	132.26	139.91	7.65	1.42
Including:	135.00	138.00	3.00	1.79
SADD076	161.13	163.14	2.01	1.17
SADD076	166.23	167.41	1.18	0.97
SADD076	178.45	185.58	7.13	1.43
Including:	179.25	183.00	3.75	1.71

CADD076	200.75	202.52	4.00	0.00
SADD076	200.75	202.63	1.88	0.99
SADD076	255.07	263.00	7.93	1.18
Including:	258.00	261.00	3.00	1.56
SADD076	321.53	325.91	4.38	1.12
Including:	323.20	325.91	2.71	1.50
SADD076	334.00	350.53	16.53	1.40
Including:	334.00	337.00	3.00	2.37
And:	334.00	340.00	6.00	1.90
And:	334.00	346.00	12.00	1.73
SADD076	424.08	424.88	0.80	0.54
SADD077	132.56	138.04	5.48	1.35
Including:	132.56	135.95	3.39	1.61
SADD077	158.05	172.71	14.66	1.52
Including:	158.05	166.00	7.95	1.70
SADD077	186.40	196.06	9.66	1.10
SADD077	198.43	201.00	2.57	0.87
SADD077	257.37	258.82	1.45	0.71
SADD077	261.35	265.75	4.40	1.69
SADD077	319.53	352.60	33.07	1.83
Including:	319.53	333.00	13.47	2.65
And:	338.00	341.00	3.00	2.28
SADD077	372.90	382.64	9.74	1.37
SADD078	108.19	111.00	2.81	2.01
SADD078	137.00	139.48	2.48	0.40
SADD078	142.85	143.67	0.82	0.46
SADD078	153.55	161.96	8.41	1.19
Including:	153.55	156.00	2.45	1.51
SADD078	169.70	177.19	7.49	1.19
SADD078	181.00	182.56	1.56	1.26
SADD078	243.05	248.90	5.85	1.77
	261.56			1.77
SADDO78		264.76	3.20	
SADD078	275.00	279.68	4.68	1.24
SADD078	323.00	337.00	14.00	1.55
Including:	323.00	333.00	10.00	1.75
And:	323.00	328.00	5.00	1.99
SADD078	366.00	373.80	7.80	1.37
Including:	370.00	373.00	3.00	2.00
SADD079	222.68	234.45	11.77	1.31
Including:	223.80	231.00	7.20	1.84
SADD079	238.20	239.52	1.32	0.94
SADD080	150.93	154.00	3.07	1.93
SADD080	235.00	239.00	4.00	0.87
SADD080	274.46	287.05	12.59	1.46
Including:	277.20	282.00	4.80	1.56
SADD081	130.40	132.22	1.82	0.86

C455004	462.05	464.00	4.00	4.40
SADD081	163.95	164.98	1.03	1.12
SADD081	197.38	198.30	0.92	0.94
SADD081	202.00	202.90	0.90	0.53
SADD081	224.77	227.80	3.03	1.16
SADD081	242.48	259.40	16.92	1.36
Including:	250.00	257.18	7.18	1.69
And:	242.48	244.15	1.67	2.02
SADD081	429.00	438.17	9.17	1.63
Including:	431.00	436.00	5.00	1.92
SADD082	122.15	123.35	1.20	0.63
SADD082	147.65	150.00	2.35	0.53
SADD082	151.00	152.00	1.00	0.47
SADD082	162.35	167.80	5.45	0.74
SADD082	237.00	264.15	27.15	1.45
Including:	245.00	259.00	14.00	1.61
SADD083	51.50	52.00	0.50	0.70
SADD083	53.75	55.50	1.75	0.53
SADD083	81.66	82.80	1.14	1.32
SADD083	91.03	93.17	2.14	1.13
SADD083	93.36	93.84	0.48	0.63
SADD083	164.55	168.02	3.47	1.54
SADD083	223.54	228.64	5.10	1.34
SADD083	305.31	308.00	2.69	0.81
SADD084	106.29	108.03	1.74	0.88
SADD084	110.27	118.38	8.11	1.42
Including:	110.27	113.00	2.73	1.77
SADD084	132.29	134.49	2.20	1.12
SADD084	135.07	136.55	1.48	0.80
SADD084	150.00	151.15	1.15	0.56
SADD084	213.12	215.49	2.37	1.55
SADD084	244.00	245.00	1.00	0.94
SADD084	270.61	272.45	1.84	1.19
SADD084	281.43	285.93	4.50	1.35
SADD084 SADD084			17.02	1.83
	321.11	338.13		
Including:	324.00	334.00	10.00	2.10
And:	324.00	329.00	5.00	2.41
SADD084	346.43	351.55	5.12	1.31
SADD085	166.62	173.00	6.38	1.49
Including:	170.00	172.00	2.00	2.28
SADD085	185.48	187.32	1.84	0.80
SADD085	243.30	243.78	0.48	0.68
SADD085	248.65	253.75	5.10	1.58
Including:	250.75	252.75	2.00	2.42
SADD086	98.00	100.96	2.96	0.82
SADD086	101.94	103.00	1.06	2.01

		1	1	Τ
SADD086	114.86	115.50	0.64	0.55
SADD086	138.35	139.54	1.19	1.60
SADD086	140.70	141.40	0.70	0.81
SADD086	143.08	148.50	5.42	1.54
Including:	144.00	146.83	2.83	1.96
SADD086	193.91	194.46	0.55	0.90
SADD086	204.72	205.85	1.13	0.47
SADD086	239.85	246.59	6.74	1.59
SADD086	272.60	275.60	3.00	0.62
SADD086	281.79	290.07	8.28	1.86
Including:	282.90	289.00	6.10	2.12
SADD086	306.07	319.59	13.52	1.25
Including:	307.00	313.00	6.00	1.70
SADD086	323.60	324.41	0.81	1.24
SADD086	337.85	349.89	12.04	1.40
Including:	339.00	343.00	4.00	2.11
SADD087	137.06	141.72	4.66	2.07
Including:	137.06	140.00	2.94	2.45
SADD087	212.39	221.41	9.02	2.06
Including:	212.39	215.00	2.61	2.45
And:	218.00	220.61	2.61	2.41
SADD087	257.60	260.78	3.18	1.02
SADD087	266.46	267.40	0.94	1.92
SADD087	405.00	406.00	1.00	0.65
SADD088	133.94	135.43	1.49	1.33
SADD088	139.76	141.75	1.99	1.81
SADD088	161.73	167.95	6.22	0.69
Including:	165.00	167.95	2.95	0.94
And:	161.73	162.90	1.17	0.80
SADD088	202.32	204.60	2.28	0.88
SADD088	248.00	254.70	6.70	1.10
Including:	252.00	254.70	2.70	1.49
SADD088	280.00	287.20	7.20	1.56
Including:	280.00	285.00	5.00	1.75
SADD088	288.64	304.06	15.42	1.48
Including:	296.00	301.00	5.00	2.19
SADD088	327.04	339.69	12.65	1.44
Including:	336.00	338.89	2.89	2.79
SADD088	349.68	351.42	1.74	1.04
SADD088	357.22	358.05	0.83	1.71
SADD089	115.19	118.54	3.35	0.61
SADD089	137.27	140.16	2.89	0.87
SADD089	212.72	231.01	18.29	1.90
Including:	213.90	221.00	7.10	2.53
SADD089	302.69	318.81	16.12	1.55

Including	302.69	308.00	F 21	2.33
Including:			5.31	
SADD089	373.00	374.71	1.71	1.00
SADD089	389.16	391.80	2.64	1.33
SADD089	402.36	404.41	2.05	0.74
SADD089	409.43	412.40	2.97	1.20
SADD090	74.28	76.00	1.72	0.69
SADD090	81.00	81.80	0.80	0.70
SADD090	145.41	147.35	1.94	1.26
SADD090	165.15	168.00	2.85	1.55
SADD090	188.80	192.12	3.32	1.01
SADD090	263.00	264.00	1.00	2.12
SADD091	93.70	94.90	1.20	0.90
SADD091	166.00	167.24	1.24	0.95
SADD091	167.60	167.94	0.34	2.08
SADD091	190.52	192.17	1.65	1.48
SADD091	208.10	209.00	0.90	0.40
SADD091	213.79	219.85	6.06	1.17
SADD091	290.29	306.21	15.92	1.64
Including:	296.00	302.00	6.00	1.91
SADD092	106.70	107.43	0.73	0.48
SADD092	110.00	111.40	1.40	1.65
SADD092	132.15	134.00	1.85	1.08
SADD092	202.92	219.04	16.12	1.23
Including:	204.00	218.00	14.00	1.39
And:	205.00	208.00	3.00	1.92
SADD092	279.93	292.47	12.54	1.54
Including:	282.00	291.00	9.00	1.91
SADD093	95.00	99.00	4.00	1.19
SADD093	170.50	171.20	0.70	0.73
SADD093	202.89	211.02	8.13	1.61
Including:	204.00	210.00	6.00	1.88
SADD093	233.00	238.57	5.57	1.56
Includina:	235.00	236.82	1.82	2.17
SADD093	244.43	246.72	2.29	1.13
SADD093	293.28	307.07	13.79	1.52
Including:	294.20	300.00	5.80	1.67
SADD093	318.00	326.16	8.16	1.36 ²
Including:	320.00	325.00	5.00	1.59 ²
SADD093	331.35	333.15	1.80	1.132
SADD094	77.00	78.62	1.62	1.36
SADD094	195.05	205.00	9.95	0.77
Including:	195.05	197.00	1.95	1.15
And:	199.00	204.00	5.00	0.90
SADD094	242.17	248.91	6.74	1.21
Including:	243.00	247.00	4.00	1.72

		T	T	Т
SADD094	267.32	273.45	6.13	1.51
SADD095	175.48	184.42	8.94	1.32
Including:	177.40	183.40	6.00	1.69
SADD095	200.01	201.55	1.54	1.35
SADD095	210.81	221.58	10.77	1.39
Including:	212.00	220.00	8.00	1.52
SADD095	315.29	319.00	3.71	1.80
SADD096	75.46	76.56	1.10	1.22
SADD096	89.38	90.15	0.77	0.66
SADD096	235.47	247.82	12.35	1.42
Including:	235.47	243.00	7.53	1.91
SADD096	283.30	297.10	13.80	1.35 ²
Including:	286.00	294.00	8.00	1.58 ²
SADD097	95.68	107.18	11.50	1.46
Including:	102.00	106.11	4.11	2.23
SADD097	114.30	133.90	19.60	1.42
Including:	114.30	119.00	4.70	1.52
SADD098	181.10	182.67	1.57	1.23
SADD098	184.72	193.84	9.12	1.62
Including:	184.72	190.00	5.28	1.82
SADD098	267.63	276.55	8.92	1.15
Including:	268.30	272.00	3.70	1.90
SADD099	89.00	89.84	0.84	0.43
SADD099	171.85	182.31	10.46	1.17
Including:	173.00	177.00	4.00	1.54
SADD099	246.25	257.00	10.75	1.17
Including:	246.25	248.00	1.75	1.67
And:	253.00	255.00	2.00	2.23
SADD100	31.86	35.20	3.34	1.20
SADD100	123.63	126.07	2.44	1.10
SADD100	188.60	192.65	4.05	1.53
SADD100	274.41	284.66	10.25	1.50
Including:	274.41	276.00	1.59	1.88
And:	279.00	283.00	4.00	1.70
SADD101	130.55	136.77	6.22	1.75
Including:	130.55	133.00	2.45	1.90
SADD101	143.94	148.50	4.56	1.05
Including:	143.94	146.70	2.76	1.45
SADD101	177.55	181.00	3.45	0.78
SADD101	214.00	220.00	6.00	1.17
Including:	214.00	217.00	3.00	1.38
SADD102	109.84	116.00	6.16	1.00
SADD102	169.00	171.77	2.77	1.18
SADD103	75.00	84.27	9.27	1.62
Including:	77.00	81.00	4.00	1.98

		T	1	T
SADD104	150.00	151.85	1.85	0.95
SADD105	69.05	71.97	2.92	1.23
SADD105	87.37	88.52	1.15	0.78
SADD105	148.43	151.65	3.22	1.14
SADD105	211.89	219.70	7.81	1.54
Including:	214.00	216.00	2.00	2.77
SADD105	271.23	282.88	11.65	1.89
Including:	271.23	281.00	9.77	2.00
SADD106	124.00	132.49	8.49	1.39
Including:	125.00	129.00	4.00	1.68
SADD106	244.30	256.38	12.08	1.22
Including:	244.30	250.00	5.70	1.72
SADD106	296.68	302.83	6.15	1.35
Including:	297.83	302.00	4.17	1.42
SADD107	50.16	74.90	24.74	1.23
Including:	58.00	68.00	10.00	1.72
SADD107	233.69	236.20	2.51	0.93
SADD107	309.00	331.00	22.00	0.98 ²
Including:	310.00	315.00	5.00	2.02 ²
And:	317.00	322.00	5.00	1.18 ²
SADD107	348.44	355.00	6.56	1.09
SADD107	427.00	429.00	2.00	1.21
SADD108	177.38	181.25	3.87	1.50
SADD108	203.06	204.66	1.60	0.96 ²
SADD108	264.25	273.21	8.96	1.27
SADD109	170.99	173.00	2.01	1.61 ²
SADD109	190.00	191.00	1.00	1.58 ²
SADD109	192.64	193.46	0.82	0.46 ²
SADD109	211.60	212.58	0.98	0.53
SADD110	65.20	68.20	3.00	0.61
SADD111	03.20		ant results ¹	0.01
SADD112	139.16	143.98	4.82	1.18
SADD112	243.59	251.95	8.36	1.50 ²
Including:	244.75	251.00	6.25	1.712
SADD112	288.94	293.10	4.16	1.71 1.64 ²
SADD112 SADD114	188.00	190.00	2.00	2.22 ²
SADD114 SADD114	187.07	204.00	16.93	1.36 ²
Including:	194.95	203.00	8.05	1.74 ²
SADD115	45.67	48.00	2.33	0.91 ²
SADD115	193.54	196.49	2.95	0.91 0.94 ²
SADD115 SADD116	72.38	76.29	3.91	1.22 ²
SADD116 SADD116	103.22	105.59	2.37	1.50 ²
				0.71 ²
SADD116	111.83	112.84	1.01	
SADD116	120.68	124.87	4.19	1.68 ²
Including:	120.68	123.87	3.19	2.02 ²

SADD116	134.44	136.32	1.88	2.00 ²
SADD116	211.55	216.47	4.92	1.72 ²
Including:	212.50	215.50	3.00	2.25 ² 0.74 ²
SADD118	24.09	25.21	1.12	
SADD119	69.03	71.00	1.97	0.432
SADD119	132.94	147.64	14.70	1.722
Including:	134.00	138.00	4.00	2.182
And:	141.00	146.82	5.82	2.26 ²
SADD119	209.84	218.32	8.48	1.74 ²
Including	211.00	216.00	5.00	2.12 ²
SADD120	130.72	132.70	1.98	1.74 ²
SADD120	202.00	203.00	1.00	1.17 ²
SADD121	220.91	224.00	3.09	1.87 ²
SADD121	252.06	256.60	4.54	1.38 ²
SADD121	253.00	256.00	3.00	1.54 ²
SADD123	205.00	207.71	2.71	0.75 ²
SADD124	82.70	86.95	4.25	0.44 ²
SADD125	95.95	99.55	3.60	0.70^{2}
SADD125	166.00	180.94	14.94	1.01 ²
Including:	166.00	168.00	2.00	1.83 ²
And:	169.00	172.00	3.00	1.52 ²
And:	174.00	178.00	4.00	1.07 ²
SADD125	243.59	246.31	2.72	1.60 ²
SADD126		No Significa	ant results¹	•
SADD127	103.70	105.71	2.01	0.83 ²
SADD127	153.87	158.97	5.10	1.75 ²
SADD127	236.36	238.31	1.95	2.49 ²
SADD128	No Significant results ¹			
SADD129	No Significant results ¹			
SADD130	No Significant results ¹			
SADD131	No Significant results ¹			
SADD133	134.44	145.55	11.11	0.97 ²
And:	140.44	144.44	4.00	1.26 ²
SADD134	168.07	181.31	13.24	1.89 ²
Including:	168.07	173.00	4.93	2.58 ²
And:	175.00	181.31	6.31	1.72 ²
SADD135	No Significant results ¹			
	ivo Significant results			

Note:

- 1. A nominal minimum Li_2O grade of 0.5% Li_2O has been used to define a 'significant intersection' over a nominal minimum intersection of 1.0m with a maximum internal dilution of 2.0 m.
- 2. New assay result received since the announcement dated 18 May 2023 and entitled "New Drilling Confirms Colina Lithium Pegmatites Extend to Over 2.0 Kms".

APPENDIX 2 JORC CODE, 2012 EDITION – TABLE 1 SECTION 1 SAMPLING TECHNIQUES AND DATA (CRITERIA IN THIS SECTION APPLY TO ALL SUCCEEDING SECTIONS)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 completed by Latin Resources. Latin Resources stream sediment sampling: Stream sediment samples were taken in the field by Latin's geologists during field campaign using pre-set locations and procedures. All surface organic matter and soil were removed from the sampling point, then the active stream sediment was collected from five holes spaced 2.5 m using a post digger. Five subsamples were collected along 25 cm depth, homogenised in a plastic tarp and split into four parts. The chosen part (1/4) was screened using a 2 mm stainless steel sieve. A composite sample weighting 350-400g of the <2 mm fraction was poured in a labelled zip lock bag for assaying. Oversize material retained in the sieve was analyzed with hand lens and discarded. The other three quartiles were discarded, sample
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	standard practices. Diamond drilling is completed using HQ size coring equipment. • Drilling techniques used at Salinas Project comprise:

Criteria	JORC Code explanation	Commentary
		 Down hole survey was carried out by Reflex EZ-TRAC tool. Core orientation was provided by an ACT Reflex (ACT
		III) tool.All drill collars are surveyed using RTK DGPS.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Latin Resources core is depth marked and orientated to check against the driller's blocks, ensuring that all core loss is taken into account. Diamond core recovery is logged and captured into the database. Zones of significant core loss may have resulted in grade dilution due to the loss of fine material.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill cores have been geologically logged. Sampling is by sawing core in half and then sampling core on nominal 1m intervals. All core sample intervals have been photographed before and after sawing. Latin's geological logging is completed for all holes, and it is representative. The lithology, alteration, and structural characteristics of drill samples are logged following standard procedures and using standardised geological codes.
		 Logging is both qualitative and quantitative depending on field being logged. All drill-holes are logged in full. Geological structures are collected using Reflex IQ Logger. All cores are digitally photographed and stored.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 For the 2021 stream sediment sampling program: All samples collected from field were dry due to dry season. To maximise representativeness, samples were taken from five holes weighting around 3 Kg each for a total of 15 Kg to be reduced to 350-400 g. Samples were dried, crushed and pulverized 250g to 95% at 150#. Any samples requiring splitting were split using a Jones splitter. For the 2022 diamond drilling program: Samples were crushed in a hammer mill to 75% passing -3mm followed by splitting off 250g using a Jones splitter and pulverizing to better than 95% passing 75 microns. Duplicate sampling is carried out routinely throughout the drilling campaign. The laboratory will carry out routine internal repeat assays on crushed samples. The selected sample mass is considered appropriate for the grain size of the material being sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	For the 2021 stream sediment sampling program: The stream sediment samples were assayed via ICM90A (fusion by sodium peroxide and finish with ICP-MS/ICP-OES) for a 56-element suite at the SGS Geosol Laboratorios located at Vespasiano/Minas Gerais, Brazil. No control samples have been used at this stage. The internal laboratory controls (blanks, duplicates and standards) are considered suitable.

checks) and whether acceptable levels of accuracy (i.e. lock of bibs) and precision have been established. 1. Color of lock of bibs) and precision have been established. 2. Sedected at Vesposiano/Minas Gerais, Brazil. 3. If lithium results are above 15,000pm, the is analyze the pulp samples just for lithium throw ICP900. (Jusion by sodium peravide and finish with ICP-MS/ICP) analyze the pulp samples just for lithium throw ICP900. (Jusion by sodium peravide and finish with ICP-MS/ICP) analyze the pulp samples just for lithium throw ICP900. (Jusion by sodium peravide and finish with ICP-MS/ICP) analyze the pulp samples just for lithium throw ICP900. (Jusion by sodium peravide and finish with ICP-MS/ICP) analyze the pulp samples just for lithium throw ICP900. (Jusion by sodium peravide and finish with ICP-MS/ICP) analyze the pulp samples just for lithium throw ICP900. (Jusion by sodium peravide and finish with ICP-MS/ICP) analyze the pulp samples just for lithium throw ICP900. (Jusion by sodium peravide and finish with ICP-MS/ICP) analyze the pulp samples just for lithium throw ICP900. (Jusion by sodium peravide and finish with ICP-MS/ICP) analyze the pulp samples just for lithium throw ICP900. (Jusion by sodium peravide and finish with ICP-MS/ICP) analyze the pulp samples just for lithium throw ICP900. (Jusion by sodium peravide and finish with ICP-MS/ICP) analyze the pulp samples just for lithium throw ICP900. (Jusion by sodium peravide and finish with ICP-MS/ICP) analyze the pulp samples just with the subjected to resompting dinish with ICP-MS/ICP acts analyze analyze and peravise and supplies and sampling and analyze and resource and supplies. (Jusion by sodium peravise and supplies and samples gust the viether essaying samples with the subject to resompting the decreasing from the entry sample subject to resompting the peravision precision of a sample subject on results which is samples which contains and peravise and peravise and in the corresponded for the pulp with peravise and peravise and peravise and	Criteria	JORC Code explanation	Commentary
independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Location of data points Location of data holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing and distribution Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. Orientation of data in relation to geological structure Orientation of the relationship between the drilling orientation and the orientation of key mineralised structures is considered to hove introduced a sampling bas, this should be assessed and reported iff indexia. Sample security The we softwined holes. Orientation of the grid data werification, data storage (physical and electronic) protocots. Specifications and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. Orientation of the relationship between the drilling orientation and the orientation of key mineralised structures and the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to hove introduced a sampling bias, this should be assessed and reported iff material. Sample security The measures taken to ensure sample security. Audits or reviews The results of any audits or reviews of sampling the feet has reviewed the field procedures used for sampling techniques and data.		standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been	 Core samples are assayed via ICM90A (fusion by sodium peroxide and finish with ICP-MS/ICP-OES) for a 56-element suite at the SGS Geosol Laboratorios located at Vespasiano/Minas Gerais, Brazil. If lithium results are above 15,000ppm, the Lab analyze the pulp samples just for lithium through ICP90Q (fusion by sodium peroxide and finish with
holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. • Specification of the grid system used. • Quality and adequacy of topographic control. Data spacing and distribution • Data spacing for reporting of Exploration Results. • Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. • Whether sample compositing has been applied. Orientation of data in relation to geological structure Orientation of depositive. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. Sample security Audits or reviews Note of the grid system used using a handheld GPS. All GPS data points were later visualized using a handheld GPS. All GPS data points were later visualized using a handheld GPS. All GPS data points were later visualized using a handheld GPS. All GPS data points were later visualized using a handheld GPS. All GPS data points were later visualized using a handheld GPS. All GPS data points were later visualized using a handheld GPS. All GPS data points were later visualized using a handheld GPS. All GPS data points were later visualized using a handheld GPS. All GPS data points were later visualized using a handheld GPS. All GPS data points were later visualized using a handheld GPS. All GPS data points were later visualized using a handheld GPS. All GPS data points were later visualized using a handheld GPS. All GPS data points were later visualized using a handheld GPS. All GPS data points were later visualized using a handheld GPS. All GPS data points were later visualized using a handheld GPS. All GPS data points were later visualized using a handheld GPS. All GPS data points were later visualized using a handheld GPS.	sampling and	 independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	significant will be subjected to resampling by the Company. This can be achieved by either reassaying of sample pulps, resplitting of coarse reject samples, or resplitting of core and reassaying. • All Latin Resources data is verified by the Competent person. All data is stored in an electronic Access Database. • Assay data and results is reported, unadjusted. • Li ₂ O results used in the market are converted from Li
 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. Whether the orientation of data in relation to geological structure If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. Sample security Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for a first stage, regional work. Every sampling spot had a composite sample and a composite sample and considered 2.5 m each along a channel for a 11 length zone or a cross pattern with the same spacing of m for the open valleys and braided channels. Due to the preliminary nature of the initial drill compaign, drill holes are designed to test specific targe with not set drill spacing. Sampling is preferentially across the strike or trend mineralised outcrops. Drilling has been designed to intersect the mappent of the preliminary nature of the initial drill compaign, drill holes are designed to test specific targe with not set drill spacing. Drilling has been designed to intersect the mappent of the deposit type. At all times samples were in the custody and control of Company's representatives until delivery to the laborat where samples were held in a secure enclosure pend processing. The competent Person for Exploration Results report here has reviewed the field procedures used for sample and the control of the prevince of the pre	,	 holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	 captured using a handheld GPS. Drill collars are located using a handheld GPS. All GPS data points were later visualized using ESRI ArcGIS Software to ensure they were recorded in the correct position. The grid system used was UTM SIRGAS 2000 zone 23
data in relation to geological structure unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. Sample security The measures taken to ensure sample security. At all times samples were in the custody and control of Company's representatives until delivery to the laborat where samples were held in a secure enclosure pend processing. Audits or reviews The results of any audits or reviews of sampling techniques and data. The competent Person for Exploration Results report here has reviewed the field procedures used for samples.		 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 between sampling points along the drainages which is considered appropriate for a first stage, regional work. Every sampling spot had a composite sample made of five subsamples spaced 2.5 m each along a channel for a 10 m length zone or a cross pattern with the same spacing of 2.5 m for the open valleys and braided channels. Due to the preliminary nature of the initial drilling campaign, drill holes are designed to test specific targets,
Company's representatives until delivery to the laborat where samples were held in a secure enclosure pend processing. Audits or reviews The results of any audits or reviews of sampling techniques and data. The Competent Person for Exploration Results report here has reviewed the field procedures used for sampling techniques and data.	data in relation to geological	 unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this 	Drilling has been designed to intersect the mapped
techniques and data. here has reviewed the field procedures used for sampl	Sample security	The measures taken to ensure sample security.	Company's representatives until delivery to the laboratory where samples were held in a secure enclosure pending
sampling and laboratory data. • No External audit has been undertaken at this stage.	Audits or reviews		here has reviewed the field procedures used for sampling program at field and has compiled results from the original sampling and laboratory data.

SECTION 2 REPORTING OF EXPLORATION RESULTS (CRITERIA LISTED IN THE PRECEDING SECTION ALSO APPLY TO THIS SECTION.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Exploration Licences: 830.578/2019, 830.579/2019, 830.580/2019, 30.581/2019, 830.582/2019, 830.691/2017, 832.515/2021 and the western portion of 831.799/2005 are 100% fully owned by Latin Resources Limited. Latin has lodged new applications for the following areas: 832.601/2022, 832.602/2022, 832.604/2022, 832.605/2022, 832.606/2022, 832.607/2022, 832.608/2022, 832.609/2022, 832.611/2022, 832.612/2022, 832.613/2022, 832.611/2022, 832.616/2022, 832.801/2022, 832.802/2022 & 832.804/2022. Latin has entered in separate exclusive option agreement to acquire 100% interest in the areas: 830.080/2022, 830.581/2019, 831.118/2008, 831.219/2017, 831.798/2015, 831.799/2005 (Second Part & Third Part), 833.881/2010 & 834.282/2007. The Company is not aware of any impediments to obtaining a licence to operate, subject to carrying out appropriate environmental and clearance surveys.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historic exploration was carried out on the area 830.080/2022 (Monte Alto) with extraction of gems (tourmaline and lepidolite), amblygonite, columbite and feldspar.
Geology	Deposit type, geological setting and style of mineralisation.	Salinas Lithium Project geology comprises Neoproterozoic age sedimentary rocks of Araçuaí Orogen intruded by fertile Li-bearing pegmatites originated by fractionation of magmatic fluids from the peraluminous S-type posttectonic granitoids of Araçuaí Orogen. Lithium mineralisation is related to discordant swarms of spodumene-bearing tabular pegmatites hosted by biotitequartz schists.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: aesting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	All drill hole summary location data is provided in Appendix 1 to this report and is accurately represented in appropriate location maps and drill sections where required.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high-grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such 	 Sample length weighted averaging techniques have been applied to the sample assay results. Where duplicate core samples have been collected in the field, results for duplicate pairs have been averaged. A nominal minimum Li₂O grade of 0.4% Li₂O has been used to define a 'significant intersection'. No grade top cuts have been applied.

Criteria	JORC Code explanation	Commentary
	 aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Drilling is carried out at right angles to targeted structures and mineralised zones where possible. Drill core orientation is of a high quality, with clear contact of pegmatite bodies, enabling the calculation of true width intersections.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	The Company has released various maps and figures showing the sample results in the geological context.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high-grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	All analytical results for lithium have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All information that is considered material has been reported, including stream sediment sampling results, Drilling results geological context, etc. Sighter metallurgical test work was undertaken on approximately 44kg of drill core sourced from drill hole SADD023 (26.99m: 94.00-120.88m) and submitted to independent laboratories SGS GEOSOL Laboratories in Belo Horizonte Brazil. Test work included crushing, size fraction analysis and HLS separation to ascertain the amenability of the Colina Project spodumene pegmatite material to DMS treatment routes.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Latin plans to undertake additional reconnaissance mapping, infill stream sediment and soil sampling at Salinas South Prospect. Follow-up infill and step-out drilling will be undertaken based on results. Additional metallurgical processing test work on drill core form the Colina Prospect.