# SALINAS DISTRICT SCALE RESOURCE CONTINUES TO GROW TOWARDS A TIER ONE LITHIUM DEPOSIT 

## Colina Southwest Extension, Infill and Fog's Block drilling results expected to increase Global JORC Resource

## HIGHLIGHTS

- Step out drilling immediately to the southwest of Colina has added significant strike extensions to the already considerable mineral resource footprint at Colina with the discovery of a new pegmatite cluster.
- Assays for a further 19 diamond drill holes have been received from the Colina Deposit, with high grade results continuing at Colina SW Extension, Colina Infill and Fog's Block.
- Colina SW Extension significant assay results include:
- SADD157: 14.7m @ 1.48\% $\mathrm{Li}_{2} \mathrm{O}$ from 157.6 m
- SADD166: 13.8m @ 1.69\% $\mathrm{Li}_{2} \mathrm{O}$ from 204.5m
- SADD168: 8.8m @ 1.84\% $\mathrm{Li}_{2} \mathrm{O}$ from 242.0m

○ SADD175: 11.2m @ 1.15\% $\mathrm{Li}_{2} \mathrm{O}$ from 132.5 m

- Colina Infill significant assay results include:
- SADD154: 19.0m @ 1.73\% $\mathrm{Li}_{2} \mathrm{O}$ from 293.0m

○ SADD159: 7.7m @ 1.34\% $\mathrm{Li}_{2} \mathrm{O}$ from 70.3m
○ SADD178: 14.0m @ 1.34\% $\mathrm{Li}_{2} \mathrm{O}$ from 237.8 m

- Fog's Block significant assay results include:

○ MCDD004: 8.5m @ 1.33\% $\mathrm{Li}_{2} \mathrm{O}$ from 155.1m

- Incl. 3.8m @ 1.76\% $\mathrm{Li}_{2} \mathrm{O}$ from 159.0m

○ MCDD004: 8.0m @ 1.08\% $\mathrm{Li}_{2} \mathrm{O}$ from 230.4m

- The Company continues to increase the Colina Deposit footprint, delivering further consistent high grade assay results which are to be incorporated into an updated Colina JORC Mineral Resource Estimate ("MRE") expected for release in Q4 2023.
- Regional soil sampling and mapping at the new Fog's East tenement has revealed more outcropping spodumene rich pegmatites with coincident lithium-in-soil anomalies. Initial drill testing is schedule for this month.
- The current 65,000-meter drill program to increase as the company is now Committed to continue operating 10-diamond drill rigs beyond 2023 at Colina Deposit and Fog's Block, expanding the program through the entirety of 2024. The company expects the global JORC MRE to expand significantly by implementing the additional drilling program.

Latin Resources Limited (ASX: LRS) ("Latin" or "the Company") is pleased to provide an update on the latest assay results received from Colina Deposit drilling activities undertaken at the Company's 100\% owned Salinas Lithium Project ("Salinas Project") in Brazil.


Figure 1: Colina Deposit plan, showing location of the Colina Extensional, Infill and Fog's Block drilling programs.

## Latin Resources' Vice President of Operations - Americas, Tony Greenaway, commented:

"Our ongoing brownfields extension drilling at Colina, and region greenfield exploration drilling continues to discover new pegmatites within the Salinas Lithium Project. Step out drilling immediately to the southwest of Colina has added significant strike extensions to the already considerable mineral resource footprint at Colina, and we expect that these will be incorporated into an updated resource estimate before the end of this year.

In addition to this, our step out drilling further to the southwest, has intersected what we believe may be a third pegmatite cluster. While it is early days, and more drilling is required to better define this developing pegmatite, we are extremely encouraged by this new discovery as it solidifies out interpretation that the Colina Deposit is just one part of a much larger system.

Our regional exploration drilling at the Fogs Block tenement located 12 km to the southwest of Colina, further enhances this wider regional interpretation, with new drilling now defining this high-grade lithium pegmatite over a strike of 500 m and a down dip extent of 150 m . This pegmatite remains open both at depth and along strike where it has been mapped continuing into the Company's adjacent tenure and highlighted by strong coincident lithium in soil anomalies.

Our understanding of the regional potential of the Salinas lithium project grows with every new discovery we make, with now three well defined mineralisation systems and Colina, Colina Southwest and Fog's Block, with potentially a fourth now emerging."

## COLINA DEPOSIT

The Company's exploration at its Salinas lithium project has to date delivered multiple spodumene rich pegmatite targets and an updated Mineral Resource Estimate of 45.2 Mt @ $1.32 \% \mathrm{Li}_{2} \mathrm{O}$, including 30.2Mt @ $1.4 \% \mathrm{Li}_{2} \mathrm{O}$ of the total resource now sitting in the Measured + Indicated category, ( 0.4 Mt @ $1.3 \% \mathrm{Li}_{2} \mathrm{O}$ Measured + 29.7Mt @ 1.4\% Li $\mathrm{Li}_{2}$ Indicated + approximately 15.0Mt @ 1.2\% Li $\mathrm{Li}_{2} \mathrm{O}$ Inferred) ("Colina MRE") from the Colina Deposit ("Colina Deposit") pegmatites ${ }^{1}$.

On 28 September 2023, the Company successfully delivered its Preliminary Economic Assessment ("PEA") for the Colina Deposit, which confirmed the potential to establish Colina as a globally competitive lithium project².

The PEA demonstrated excellent project economics and financial returns, including After-tax NPV8\% of A\$3.6 billion (US\$2.5 billion) - IRR of 132\% - Total LOM revenue of A\$12.6 billion (US\$8.4 billion), with free cash flow of A\$6.8billion (US\$4.7billion) - Average LOM annual production of 405,000tpa 5.5\% $\mathrm{Li}_{2} \mathrm{O}$ spodumene concentrate ("SC5.5") - Phase 1 capital expenditure of US\$253 million - Payback of 7 months ${ }^{2}$. Additionally, the PEA identified Minas Gerais as excellent jurisdiction to support delivery of the Colina Project into a sustainable, large and low-cost spodumene operation on an accelerated basis.

Further assay results received to date from the Colina Extensional, Colina Infill and follow up results from Fog's Block drilling programs continues to improve the mineralised footprint of the Colina Deposit and firms a new mineral resource potential at Fog's Block. The new results reassures the Company's interpretation that the mineralisation between Colina MRE and Fog's Block are of the same style and high tenor spodumene mineralisation with the mineralised corridor extending a significant distance of $\sim 12 \mathrm{~km}$ to the southwest from the existing 45.2 Mt Li ${ }_{2} \mathrm{O}$ @ 1.32\% Colina MRE (Figure 2).

The extensive drilling program continues at Colina Deposit with 10 rigs operating on site, undertaking a comprehensive diamond drilling program throughout the remainder of 2023. The Company has expanded the 2023 65,000m drill program with a commitment to drill throughout 2024, with the key strategy to increase tonnage and upgrade the confidence level in the current Colina MRE. Additionally, the 2024 drilling program will allow the Company to continue validating the new priority drill targets identified by the Company at Colina and Fog's Block.

As part of this announcement, new drilling results are being released for the following drill programs currently being undertaken by the Company:

| Colina Deposit | Colina Infill diamond drilling |
| :--- | :--- |
|  | Colina Southwest Extension diamond drilling |
| Fog's Block | Exploration diamond drilling |

[^0]

Figure 2: Colina Deposit plan, showing location of the Colina Extensional, Infill and Fog's Block drilling programs.

## COLINA DEPOSIT EXTENSION DRILLING- SOUTHWEST TARGET

The Colina southwest target ("Colina SW") is located approximately 560 m immediately southwest of the Company's 45.2Mt Colina Lithium Deposit ${ }^{3}$.

Following the Company's announcement dated 28 August 2023 and entitled "Positive High- Grade Lithium Results Continue at Colina", the Company has now completed a further 10 holes for $3,883.6 \mathrm{~m}$ of drilling at Colina SW target.

Complete assay results have been received for a further 12 holes, with significant drill intercepts included in Table 1 below.

The Colina SW target continues to deliver consistent thick high-grade results, confirming the geological interpretation that the Colina MRE is open along strike to the southwest (refer to Figure 3).

For full collar and assay details, refer to Appendix 2 and 3.
Table 1: Significant drill intercepts from the Colina SW Extension program.

| Hole ID | From (m) | To (m) | Interval (m) | Li2 O\% |
| :---: | :---: | :---: | :---: | :---: |
| SADD157 | 157.6 | 172.3 | 14.7 | 1.48 |
| Including: | 157.6 | 166.6 | 9.0 | 1.67 |
| SADD157 | 417.0 | 420.5 | 3.5 | 1.81 |
| SADD161 | 131.3 | 134.3 | 3.0 | 1.61 |

[^1]| SADD161 | 221.3 | 229.8 | 8.5 | 0.99 |
| ---: | :---: | :---: | :---: | :---: |
| SADD166 | 204.5 | 218.3 | 13.8 | 1.69 |
| Including: | 210.4 | 215.3 | 4.9 | 1.96 |
| SADD168 | 242.0 | 250.8 | 8.8 | 1.84 |
| Including: | 242.0 | 245.0 | 3.0 | 2.45 |
| SADD175 | 132.5 | 143.7 | 11.2 | 1.15 |
| Including: | 132.5 | 137.0 | 4.5 | 1.30 |



Figure 3: Location of Colina SW and Colina Infill drilling collars


Figure 4: Sectional view ('SW- NE') of Colina SW drilling collar with Colina Infill Drilling collars indicating multiple stacked pegmatites and grade.

## COLINA DEPOSIT- INFILL DRILLING

The Colina MRE currently stands comprises a JORC Mineral Resource Estimate total of $45.2 \mathrm{Mt} @ 1.34 \% \mathrm{Li}_{2} \mathrm{O}$, including $\mathbf{3 0 . 2} \mathrm{Mt}$ @ 1.4\% $\mathrm{Li}_{2} \mathrm{O}$ of the total resource now sitting in the Measured + Indicated category, ( 0.4 Mt @ $1.3 \% \mathrm{Li}_{2} \mathrm{O}$ Measured + 29.7 Mt @ 1.4\% $\mathrm{Li}_{2} \mathrm{O}$ Indicated) + approximately $15.0 \mathrm{Mt} @ 1.2 \% \mathrm{Li}_{2} \mathrm{O}$ Inferred ("Colina MRE") and was based on a total of 135 diamond drill holes for $39,033 \mathrm{~m}$ of drill core ${ }^{4}$.

The Company continues to undertake a comprehensive infill drilling program at Colina Deposit ("Colina Infill") with a further 6 holes for $2,783.4 \mathrm{~m}$ being completed since the Company's last announcement dated 28 August 2023.

A total of 18 holes for $6,438.8 \mathrm{~m}$ in infill drilling has now been completed since the Colina MRE was defined.
Complete assay results have been received for a further 3 holes, with significant drill intercepts included in Table 2 below.

The Colina Infill drilling program demonstrates consistent high-grade mineralisation, providing confidence in the Company's ability to add additional confidence and tonnage to the existing Colina MRE.

The Company anticipates delivering a updated Colina MRE in late Q4 2023, which is to incorporate the recent Colina Infill drilling.

For full collar and assay details, refer to Appendix 2 and 3.
Table 2: Significant drill intercepts from the Colina Infill program.

| Hole ID | From (m) | To (m) | Interval (m) | Li2O\% |
| :---: | :---: | :---: | :---: | :---: |
| SADD154 | 293.0 | 312.0 | 19.0 | 1.73 |
| SADD159 | 70.3 | 78.0 | 7.7 | 1.34 |
| SADD178 | 237.8 | 252.2 | 14.4 | 1.34 |

## COLINA SOUTH-WEST- NEW PEGMATITE SWARMS DEVELOPING

Step out drilling to the southwest of the Colina Deposit has continued to return strong mineralisation intercepts extending the known pegmatite swarm cluster as detailed above. Additional reconnaissance stepout drilling further to the southwest, has indicated the likelihood that a third stacked pegmatite system is developing (Figure 4).

Based on the initial holes, the Company considers the spodumene mineralisation encountered in this new stacked pegmatite system represents an extension of the Colina Deposit, confirming the broader regional interpretation that the full 12 km strike of the "Prospective Mineralisation Corridor" (Figure 2), has the potential to host multiple "Colina Style" deposits.

This regional interpretation and Mineralized Corridor is further supported by the Company's proven discovery of high grade lithium bearing pegmatites at the Fog's Block Prospect with the potential to significantly add to the Colina Deposit resource base.

## FOG'S BLOCK TARGET

Fog's Block target is located approximately 12km southwest of the Company's 45.2Mt Colina Lithium Deposit ${ }^{5}$ (Figure 2).

Following the Company’s announcement dated 28 August 2023 and entitled "Positive High- Grade Lithium Results Continue at Colina", the Company has now completed a further 4 holes for 1,612.4m of drilling across

[^2]Fog's Block, extending the know pegmatites over a strike of 500 m , and to a depth of 120 m below surface (Figure 5).

Complete assay results have now been received for a further 4 holes, with significant drill intercepts included in Table 3 below.

The Company continues to drill Fog's Block with 1 diamond drill rig dedicated to drilling the target. Results received to date have confirmed the continuity of mineralogy and structural controls appear consistent with that encountered at the Colina Deposit. The Company remains confident that a maiden resource can be defined at Fog's Block, increasing the global Colina Project tonnage and improving the Colina Project economics.

The Company will continue to update the market on further assay results from completed holes at Fog's Block once received.

For full collar and assay details, refer to Appendix 2 and 3.
Table 3: Significant drill intercepts from the Fog's Block target.

| Hole ID | From (m) | To (m) | Interval (m) | Li्2 O (\%) |
| :---: | :---: | :---: | :---: | :---: |
| MCDD004 | 155.1 | 163.6 | 8.5 | 1.33 |
| Including: | 159 | 162.8 | 3.8 | 1.76 |
| MCDD004 | 230.4 | 238.4 | 8 | 1.08 |
| MCDD005 | 224.8 | 230.3 | 5.5 | 0.95 |
| Including: | 227 | 229.5 | 2.5 | 1.27 |
| MCDD006 | 132 | 135 | 3 | 1.27 |



Figure 5: Fog's Block showing the completed and assayed holes.

## FOG'S BLOCK EAST

The Fog's Block mineralisation remains open at depth and along strike to the Southeast, where it is interpreted to continue into the Company's adjacent tenement ("Fog's Block East"). Recent mapping and soil sampling on this newly acquired tenement has shown the presence of weathered spodumene rich pegmatites in outcrop, with coincident strong lithium-in-soil anomalies (refer to Figure 6 and 7). These new high priority target areas will be the focus of drilling in the coming weeks.

For full soil sample location and assay details, refer to Appendix 4 and 5.


Figure 6: Fog's Block East thematic soil sampling map.

RESOURCES


Figure 7: Fog's Block and Fog's Block East soil sampling trend map.

Table 4: Colina Mineral Resource Estimate ${ }^{6}$ reported at $0.5 \%$ Li2 $_{2} \mathrm{O}$ cut-off grade separated by category.

| Deposit | Resource Category | Tonnes <br> (Mt) | $\begin{aligned} & \text { Grade } \\ & \left(\mathrm{Li}_{2} \mathrm{O} \%\right) \end{aligned}$ | $\begin{aligned} & \mathrm{Li}_{2} \mathrm{O} \\ & (\mathrm{Kt}) \end{aligned}$ | Contained LCE (Kt) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Colina | Measured | 0.43 | 1.34 | 5.8 | 14.3 |
|  | Indicated | 29.74 | 1.37 | 408.1 | 1,009.3 |
|  | Measured + Indicated | 30.17 | 1.37 | 413.9 | 1,023.6 |
|  | Inferred | 15.02 | 1.22 | 183.5 | 453.7 |
| Total |  | 45.19 | 1.32 | 597.4 | 1,477.3 |

Ends
This Announcement has been authorised for release to ASX by the Board of Latin Resources
For further information please contact:

Chris Gale<br>Managing Director<br>Latin Resources Limited<br>+61 861174798

Fiona Marshall<br>Senior Communications Advisor<br>White Noise Communications<br>+61 400512109<br>fiona@whitenoisecomms.com

info@latinresources.com.au
www.latinresources.com.au


#### Abstract

About Latin Resources Latin Resources Limited (ASX: LRS) is an Australian-based mineral exploration company, with projects in South America and Australia, that is developing mineral projects in commodities that progress global efforts towards Net Zero emissions.

The Company is focused on its flagship Salinas Lithium Project in the pro-mining district of Minas Gerais Brazil, where the Company has defined a total Mineral Resource Estimate at its Colina Lithium Deposit* of 45.2Mt @ $1.32 \% \mathrm{Li}_{2} \mathrm{O}$, reported above a cut-off of $0.5 \% \mathrm{Li}_{2} \mathrm{O}$.

The classification of this JORC MRE includes $30.2 \mathrm{Mt} @ 1.4 \% \mathrm{Li}_{2} \mathrm{O}$ of the total resource now sitting in the Measured + Indicated category ( $0.43 \mathrm{Mt} @ 1.34 \% \mathrm{Li}_{2} \mathrm{O}$ Measured + 29.7Mt @ 1.37\% $\mathrm{Li}_{2} \mathrm{O}$ Indicated) + 15.0Mt @ 1.22\% $\mathrm{Li}_{2} \mathrm{O}$ Inferred.

The Company recently defined a Preliminary Economic Assessment (PEA)** which contemplates a proposed 3.6Mtpa standalone mining and processing operation over two phases. where the economics show after-tax NPV8\% of A\$3.6 billion (US\$2.5 billion) and combined after-tax IRR of $132 \%$.

Latin also holds the Catamarca Lithium Project in Argentina and through developing these assets, aims to become one of the key lithium players to feed the world's insatiable appetite for battery metals. *For full details of the Colina Lithium Deposit MRE, please refer to ASX Announcement dated 20 June 2023. **For full details of the Colina Lithium Project PEA, please refer to ASX Announcement dated 28 September 2023.


## Forward-Looking Statement

This ASX announcement may include forward-looking statements. These forward-looking statements are not historical facts but rather are based on Latin Resources Ltd.'s current expectations, estimates and assumptions about the industry in which Latin Resources Ltd operates, and beliefs and assumptions regarding Latin Resources Ltd.'s future performance. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks", "estimates", "potential" and similar expressions are intended to identify forward-looking statements. Forward-looking statements are only predictions and are not guaranteed, and they are subject to known and unknown risks, uncertainties and assumptions, some of which are outside the control of Latin Resources Ltd. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward-looking statements or other forecast. Actual values, results or events may be materially different to those expressed or implied in this ASX announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. Any forward-looking statements in this announcement speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and the ASX Listing Rules, Latin Resources Ltd does not undertake any obligation to update or revise any information or any of the forwardlooking statements in this announcement or any changes in events, conditions or circumstances on which any such forward looking statement is based.

## Competent Person Statement - Salinas Lithium Project

The information in this report that relates to Geological Data and Exploration Results for the Salinas Lithium Project is based on information compiled by Mr Anthony Greenaway, who is a Member of the Australian Institute of Mining and Metallurgy. Mr Greenaway sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Greenaway consents to the inclusion in this report of the matters based on his information, and information presented to him, in the form and context in which it appears.

The information in this report that relates the Mineral Resource Estimate for the Salinas Lithium Project are based on the information compiled by Mr Marc-Antoine Laporte M.Sc., P.Geo, who is an employee of SGS Canada Ltd and a member of the L'Ordre des Géologues du Québec. He is a Senior Geologist for the SGS Geological Services Group and as more than 15 years of experience in industrial mineral, base and precious metals exploration as well as Mineral Resource evaluation and reporting. Mr Laporte sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to quality as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

## Confirmation Statement - Colina Project Preliminary Economic Assessment

The production targets and forecast financial information disclosed in this Announcement is extracted from the Company's ASX announcement entitled "Robust Results for Colina Lithium Project Preliminary Economic Assessment (PEA)", dated 28 September 2023. The Company confirms all material assumptions underpinning the production targets and forecast financial information derived from the production targets in the initial announcement continue to apply and have not materially changed.

## APPENDIX 1

## SALINAS LITHIUM PROJECT REGIONAL GEOLOGY AND TENURE



## APPENDIX 2

COLINA DEPOSIT EXTENSIONAL AND FOG'S BLOCK DIAMOND DRILL COLLAR DETAILS

| Hole ID | Easting (m) | Northing (m) | $\begin{gathered} \text { RL } \\ (\mathrm{m}) \end{gathered}$ | $\begin{gathered} \text { Azi } \\ \text { (deg) } \end{gathered}$ | $\begin{gathered} \text { Dip } \\ \text { (deg) } \end{gathered}$ | Depth (m) | Target | Hole <br> Status |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MCDD003 | 799372.2 | 8207638.2 | 615.4 | 210 | -50 | 450.1 | Fog's Block | Complete |
| MCDD004 | 799920.5 | 8207203.7 | 629.6 | 210 | -50 | 444.2 | Fog's Block | Complete |
| MCDD005 | 799974.6 | 8207097.3 | 629.9 | 210 | -50 | 349.6 | Fog's Block | Complete |
| MCDD006 | 799681.9 | 8207347.7 | 584.7 | 210 | -50 | 349.5 | Fog's Block | Complete |
| MCDD007 | 799749.3 | 8207474.8 | 614.7 | 210 | -50 | 482.6 | Fog's Block | Complete |
| MCDD008 | 799889.1 | 8207323.1 | 601.8 | 210 | -50 | 430.7 | Fog's Block | Complete |
| MCDD009 | 800011.0 | 8207172.0 | 608.1 | 210 | -50 | - | Fog's Block | In progress |
| SADD157 | 807077.6 | 8214054 | 824.95 | 260 | -70 | 450.16 | Colina SW | Complete |
| SADD160 | 806339.8 | 8213518 | 823.23 | 260 | -65 | 517.8 | Colina SW | Complete |
| SADD161 | 807274.6 | 8214089 | 828.08 | 260 | -70 | 451.6 | Colina SW | Complete |
| SADD162 | 806979.1 | 8214037 | 823.64 | 260 | -70 | 454.97 | Colina SW | Complete |
| SADD163 | 806639.7 | 8213868 | 812.73 | 260 | -70 | 271.85 | Colina SW | Complete |
| SADD164 | 807191.4 | 8213871 | 830.06 | 260 | -65 | 450.13 | Colina SW | Complete |
| SADD166 | 807176 | 8214071 | 826.61 | 260 | -71 | 459.37 | Colina SW | Complete |
| SADD167 | 806743 | 8213892 | 818.44 | 260 | -71 | 450.26 | Colina SW | Complete |
| SADD168 | 807375.7 | 8214110 | 828.99 | 260 | -72 | 450.38 | Colina SW | Complete |
| SADD169 | 806843.4 | 8213910 | 822.62 | 260 | -70 | 466.8 | Colina SW | Complete |
| SADD171 | 807093.6 | 8213858 | 828.63 | 260 | -70 | 450.3 | Colina SW | Complete |
| SADD173 | 807471.5 | 8214123 | 829.73 | 260 | -70 | 429.3 | Colina SW | Complete |
| SADD174 | 806681.7 | 8213982 | 792.93 | 260 | -70 | 271.8 | Colina SW | Complete |
| SADD175 | 806942.5 | 8213927 | 824.39 | 260 | -70 | 450.2 | Colina SW | Complete |
| SADD176 | 807041.6 | 8213944.7 | 826.0 | 260 | -71 | 453.3 | Colina SW | Complete |
| SADD177 | 806777.9 | 8214001.5 | 805.7 | 260 | -70 | 391.6 | Colina SW | Complete |
| SADD179 | 806890.7 | 8213817.6 | 825.1 | 260 | -65 | 360.3 | Colina SW | Complete |
| SADD180 | 807128.0 | 8213958.2 | 827.5 | 260 | -75 | 440.4 | Colina SW | Complete |
| SADD182 | 807443.7 | 8214015.8 | 830.9 | 260 | -75 | 400.9 | Colina SW | Complete |
| SADD183 | 806698.8 | 8213784.4 | 819.5 | 260 | -65 | 345.2 | Colina SW | Complete |
| SADD186 | 807242.0 | 8213980.0 | 829.1 | 260 | -72 | 358.7 | Colina SW | Complete |
| SADD190 | 806956.4 | 8213728.4 | 828.2 | 260 | -68 | 351.2 | Colina SW | Complete |
| SADD191 | 807342.6 | 8213998.1 | 830.2 | 260 | -73 | 400.9 | Colina SW | Complete |
| SADD192 | 807056.1 | 8213747.2 | 829.5 | 260 | -65 | 360.3 | Colina SW | Complete |
| SADD193 | 806855.9 | 8213710.6 | 826.0 | 260 | -65 | 310.8 | Colina SW | Complete |
| SADD198 | 806754.4 | 8213693.4 | 823.4 | 260 | -65 | 300.2 | Colina SW | Complete |
| SADD154 | 807991.2 | 8214611.1 | 799.9 | 260 | -74 | 336.6 | Colina Infill | Complete |
| SADD159 | 807749.8 | 8214833.4 | 745.7 | 260 | -70 | 201.3 | Colina Infill | Complete |
| SADD178 | 807756.8 | 8214716.5 | 746.0 | 260 | -72 | 508.9 | Colina Infill | Complete |
| SADD181 | 808115.5 | 8215098.6 | 719.5 | 260 | -84 | 320.1 | Colina Infill | Complete |
| SADD184 | 807949.8 | 8214753.7 | 772.4 | 260 | -75 | 600.3 | Colina Infill | Complete |
| SADD185 | 807704.2 | 8214879.9 | 760.8 | 260 | -73 | 504.5 | Colina Infill | Complete |
| SADD187 | 807967.9 | 8214672.6 | 788.3 | 253 | -69 | 530.5 | Colina Infill | Complete |
| SADD188 | 808114.1 | 8214735.5 | 790.0 | 260 | -81 | 450.4 | Colina Infill | Complete |
| SADD189 | 808116.0 | 8215206.0 | 696.5 | 260 | -75 | 399.3 | Colina Infill | Complete |
| SADD194 | 807842.3 | 8214819.6 | 769.6 | 258 | -67 | 534.3 | Colina Infill | In progress |
| SADD195 | 807867.8 | 8214757.7 | 767.7 | 255 | -69 | 351.3 | Colina Infill | In progress |
| SADD196 | 808114.4 | 8214836.0 | 781.3 | 260 | -84 | 298.6 | Colina Infill | In progress |
| SADD197 | 808067.1 | 8215501.9 | 589.0 | 260 | -70 | 343.5 | Colina Infill | In progress |
| SADD199 | 808048.6 | 8215188.0 | 686.0 | 260 | -78 | 84.2 | Colina Infill | In progress |
| SADD200 | 808085.1 | 8214891.0 | 777.4 | 260 | -72 | 194.0 | Colina Infill | In progress |
| SADD201 | 808073.0 | 8214678.8 | 792.9 | 260 | -70 | 167.4 | Colina Infill | In progress |

## APPENDIX 3

COLINA DEPOSIT EXTENSIONAL AND FOG'S BLOCK DIAMIND DRILL PROGRAMMES - SIGNIFICANT INTERSECTIONS

| Hole ID | From (m) | To (m) | Interval (m) | Li2O (\%) | Target |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MCDD003 | No Significant Results ${ }^{1}$ |  |  |  | Fog's Block |
| MCDD004 | 146.5 | 148.3 | 1.8 | 1.34 | Fog's Block |
| MCDD004 | 151.6 | 152.4 | 0.8 | 0.46 | Fog's Block |
| MCDD004 | 153.9 | 154.3 | 0.4 | 0.47 | Fog's Block |
| MCDD004 | 155.1 | 163.6 | 8.5 | 1.33 | Fog's Block |
| Including: | 159.0 | 162.8 | 3.8 | 1.76 | Fog's Block |
| MCDD004 | 230.4 | 238.4 | 8.0 | 1.08 | Fog's Block |
| Including: | 231.2 | 232.7 | 1.4 | 0.84 | Fog's Block |
| And: | 232.7 | 233.0 | 0.3 | 0.91 | Fog's Block |
| And: | 233.4 | 238.4 | 5.0 | 1.26 | Fog's Block |
| MCDD004 | 240.8 | 241.5 | 0.7 | 0.73 | Fog's Block |
| MCDD004 | 277.7 | 279.9 | 2.2 | 0.55 | Fog's Block |
| MCDD005 | 111.3 | 116.0 | 4.7 | 0.74 | Fog's Block |
| MCDD005 | 120.7 | 122.3 | 1.6 | 0.83 | Fog's Block |
| MCDD005 | 124.8 | 128.0 | 3.2 | 0.56 | Fog's Block |
| MCDD005 | 173.2 | 175.0 | 1.8 | 0.73 | Fog's Block |
| MCDD005 | 181.0 | 185.0 | 4.0 | 1.65 | Fog's Block |
| MCDD005 | 212.9 | 214.0 | 1.1 | 0.42 | Fog's Block |
| MCDD005 | 224.8 | 230.3 | 5.5 | 0.95 | Fog's Block |
| Including: | 227.0 | 229.5 | 2.5 | 1.27 | Fog's Block |
| MCDD006 | 91.0 | 94.6 | 3.6 | 0.98 | Fog's Block |
| MCDD006 | 94.9 | 96.4 | 1.6 | 0.68 | Fog's Block |
| MCDD006 | 100.5 | 102.5 | 2.0 | 0.78 | Fog's Block |
| MCDD006 | 124.2 | 125.9 | 1.7 | 0.96 | Fog's Block |
| MCDD006 | 132.0 | 135.0 | 3.0 | 1.27 | Fog's Block |
| MCDD006 | 136.3 | 137.0 | 0.7 | 0.70 | Fog's Block |
| MCDD006 | 139.9 | 140.5 | 0.6 | 0.73 | Fog's Block |
| MCDD006 | 141.2 | 142.2 | 1.0 | 0.60 | Fog's Block |
| MCDD007 |  | Result | ding |  | Fog's Block |
| MCDD008 |  | Result | ding |  | Fog's Block |
| MCDD009 |  | Drilling | gress |  | Fog's Block |
| SADD157 | 157.6 | 172.3 | 14.7 | 1.48 | Colina SW |
| Including: | 157.6 | 166.6 | 9.0 | 1.67 | Colina SW |
| SADD157 | 261.0 | 263.3 | 2.3 | 0.95 | Colina SW |
| SADD157 | 323.0 | 323.8 | 0.8 | 1.74 | Colina SW |
| SADD157 | 370.6 | 373.7 | 3.1 | 0.99 | Colina SW |
| SADD157 | 417.0 | 420.5 | 3.5 | 1.81 | Colina SW |
| SADD160 | 323.4 | 326.0 | 2.6 | 1.57 | Colina SW |
| SADD160 | 358.1 | 360.0 | 1.9 | 0.54 | Colina SW |
| SADD160 | 387.0 | 388.1 | 1.0 | 0.82 | Colina SW |
| SADD161 | 131.3 | 134.3 | 3.0 | 1.61 | Colina SW |
| SADD161 | 221.3 | 229.8 | 8.5 | 0.99 | Colina SW |
| Including: | 221.3 | 224.0 | 2.7 | 1.07 | Colina SW |
| And: | 226.0 | 229.0 | 3.0 | 1.27 | Colina SW |
| LATIN RESOURCES LIMITED Unit 3, 32 Harrogate Street, West Leederville. WA 6007 | P +61 86117 <br> E info@latinre W www.latinr | m.au | $\begin{aligned} & \text { S \| FRA:XL5 } \\ & 31405144 \end{aligned}$ |  | Page 1 |

\begin{tabular}{|c|c|c|c|c|c|}
\hline SADD161 \& 241.0 \& 246.3 \& 5.3 \& 1.11 \& Colina SW <br>
\hline Including: \& 243.0 \& 245.2 \& 2.2 \& 1.71 \& Colina SW <br>
\hline SADD162 \& 296.9 \& 298.2 \& 1.3 \& 1.11 \& Colina SW <br>
\hline SADD162 \& 369.9 \& 374.2 \& 4.3 \& 1.44 \& Colina SW <br>
\hline SADD163 \& \& No Signif \& $1 s^{1}$ \& \& Colina SW <br>
\hline SADD164 \& 322.0 \& 326.0 \& 4.0 \& 0.83 \& Colina SW <br>
\hline Including: \& 322.0 \& 324.0 \& 2.0 \& 1.21 \& Colina SW <br>
\hline SADD166 \& 194.2 \& 198.8 \& 4.6 \& 1.27 \& Colina SW <br>
\hline Including: \& 196.0 \& 198.0 \& 2.0 \& 1.61 \& Colina SW <br>
\hline SADD166 \& 204.5 \& 218.3 \& 13.8 \& 1.69 \& Colina SW <br>
\hline Including: \& 210.4 \& 215.3 \& 4.9 \& 1.96 \& Colina SW <br>
\hline SADD166 \& 249.8 \& 250.9 \& 1.1 \& 0.55 \& Colina SW <br>
\hline SADD166 \& 296.9 \& 297.7 \& 0.8 \& 0.58 \& Colina SW <br>
\hline SADD166 \& 340.4 \& 342.4 \& 2.0 \& 2.02 \& Colina SW <br>
\hline SADD166 \& 448.5 \& 450.1 \& 1.6 \& 0.53 \& Colina SW <br>
\hline SADD167 \& 385.4 \& 386.0 \& 0.6 \& 1.03 \& Colina SW <br>
\hline SADD168 \& 158.6 \& 161.4 \& 2.8 \& 1.65 \& Colina SW <br>
\hline SADD168 \& 242.0 \& 250.8 \& 8.8 \& 1.84 \& Colina SW <br>
\hline Including: \& 242.0 \& 245.0 \& 3.0 \& 2.45 \& Colina SW <br>
\hline SADD169 \& 107.2 \& 113.0 \& 5.8 \& 0.94 \& Colina SW <br>
\hline Including: \& 107.2 \& 110.2 \& 3.0 \& 1.25 \& Colina SW <br>
\hline SADD169 \& 131.2 \& 133.3 \& 2.1 \& 1.41 \& Colina SW <br>
\hline SADD169 \& 156.6 \& 157.6 \& 1.0 \& 0.81 \& Colina SW <br>
\hline SADD169 \& 182.3 \& 185.0 \& 2.7 \& 1.63 \& Colina SW <br>
\hline SADD169 \& 323.7 \& 327.0 \& 3.3 \& 0.95 \& Colina SW <br>
\hline SADD169 \& 213.8 \& 216.0 \& 2.3 \& 1.04 \& Colina SW <br>
\hline SADD169 \& 448.1 \& 449.0 \& 0.9 \& 0.68 \& Colina SW <br>
\hline SADD171 \& 179.0 \& 183.8 \& 4.8 \& 1.03 \& Colina SW <br>
\hline Including: \& 179.0 \& 182.0 \& 3.0 \& 1.36 \& Colina SW <br>
\hline SADD173 \& \multicolumn{4}{|c|}{Results Pending} \& Colina SW <br>
\hline SADD174 \& \multicolumn{4}{|c|}{Results Pending} \& Colina SW <br>
\hline SADD175 \& 132.5 \& 143.7 \& 11.2 \& 1.15 \& Colina SW <br>
\hline Including: \& 132.5 \& 137.0 \& 4.5 \& 1.30 \& Colina SW <br>
\hline And: \& 139.0 \& 141.9 \& 2.8 \& 1.36 \& Colina SW <br>
\hline SADD175 \& 157.3 \& 158.4 \& 1.2 \& 0.99 \& Colina SW <br>
\hline SADD175 \& 210.0 \& 211.0 \& 1.0 \& 1.66 \& Colina SW <br>
\hline SADD175 \& 267.9 \& 269.8 \& 1.9 \& 0.54 \& Colina SW <br>
\hline SADD175 \& 354.3 \& 358.2 \& 3.9 \& 1.55 \& Colina SW <br>
\hline SADD176 \& \multicolumn{4}{|c|}{Results Pending} \& Colina SW <br>
\hline SADD177 \& \multicolumn{4}{|c|}{Results Pending} \& Colina SW <br>
\hline SADD179 \& \multicolumn{4}{|c|}{Results Pending} \& Colina SW <br>
\hline SADD180 \& \multicolumn{4}{|c|}{Results Pending} \& Colina SW <br>
\hline SADD182 \& \multicolumn{4}{|c|}{Results Pending} \& Colina SW <br>
\hline SADD183 \& \multicolumn{4}{|c|}{Results Pending} \& Colina SW <br>
\hline SADD186 \& \multicolumn{4}{|c|}{Results Pending} \& Colina SW <br>
\hline SADD190` \& \multicolumn{4}{|c|}{Results Pending} \& Colina SW <br>
\hline SADD191 \& \multicolumn{4}{|c|}{Results Pending} \& Colina SW <br>
\hline SADD192 \& \multicolumn{4}{|c|}{Results Pending} \& Colina SW <br>
\hline SADD193 \& \multicolumn{4}{|c|}{Results Pending} \& Colina SW <br>

\hline LATIN RESOURCES LIMITED Unit 3, 32 Harrogate Street, West Leederville. WA 6007 \& \multicolumn{2}{|l|}{| P +61861174798 |
| :--- |
| E info@latinresources.com.au W www.latinresources.com.au |} \& RA:XL5 \& \& Page 1 <br>

\hline
\end{tabular}

| SADD198 | Results Pending |  |  |  | Colina SW |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SADD154 | 293.0 | 312.0 | 19.0 | 1.73 | Colina Infill |
| SADD159 | 19.8 | 21.0 | 1.2 | 1.07 | Colina Infill |
| SADD159 | 70.3 | 78.0 | 7.7 | 1.34 | Colina Infill |
| SADD159 | 180.2 | 181.3 | 1.1 | 0.59 | Colina Infill |
| SADD178 | 25.2 | 28.9 | 3.7 | 1.00 | Colina Infill |
| SADD178 | 30.7 | 33.4 | 2.7 | 1.67 | Colina Infill |
| SADD178 | 152.9 | 156.0 | 3.1 | 1.35 | Colina Infill |
| SADD178 | 225.8 | 227.8 | 2.0 | 1.20 | Colina Infill |
| SADD178 | 234.4 | 234.9 | 0.5 | 0.58 | Colina Infill |
| SADD178 | 237.8 | 252.2 | 14.4 | 1.34 | Colina Infill |
| SADD181 | Results Pending |  |  |  | Colina Infill |
| SADD184 | Results Pending |  |  |  | Colina Infill |
| SADD185 | Results Pending |  |  |  | Colina Infill |
| SADD187 | Results Pending |  |  |  | Colina Infill |
| SADD188 | Results Pending |  |  |  | Colina Infill |
| SADD189 | Results Pending |  |  |  | Colina Infill |
| SADD194 | Drilling In Progress |  |  |  | Colina Infill |
| SADD195 | Drilling In Progress |  |  |  | Colina Infill |
| SADD196 | Drilling In Progress |  |  |  | Colina Infill |
| SADD197 | Drilling In Progress |  |  |  | Colina Infill |
| SADD199 | Drilling In Progress |  |  |  | Colina Infill |
| SADD200 | Drilling In Progress |  |  |  | Colina Infill |
| SADD201 | Drilling In Progress |  |  |  | Colina Infill |

Note:

1. A nominal minimum $\mathrm{Li}_{2} \mathrm{O}$ grade of $0.5 \% \mathrm{Li}_{2} \mathrm{O}$ has been used to define a 'significant intersection' over a nominal minimum intersection of 1.0 m with a maximum internal dilution of 2.0 m .

## APPENDIX 4

FOG'S BLOCK SOIL SAMPLE PROGRAM- COORDINATES AND RESULTS

| Sample ID | UTM_X | UTM_Y | Elevation | Li, O \% | Sample ID | UTM_X | UTM_Y | Elevation | $\mathrm{Li}_{2} \mathrm{O} \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SSA1431 | 800039.15 | 8208036.17 | 641.01 | 1.31\% | SSA1487 | 797239 | 8208037 | 628.65 | 1.36\% |
| SSA1432 | 799991.42 | 8208036.49 | 639.09 | 1.51\% | SSA1488 | 797188.2 | 8208037 | 634.77 | 1.05\% |
| SSA1433 | 799938.58 | 8208038.32 | 629.84 | 1.18\% | SSA1489 | 797139.4 | 8208037 | 632.32 | 1.16\% |
| SSA1434 | 799889.37 | 8208040.09 | 629.1 | 1.23\% | SSA1490 | 797089.7 | 8208036 | 638.86 | 1.29\% |
| SSA1435 | 799837.62 | 8208035.37 | 618.47 | 1.16\% | SSA1491 | 797037.6 | 8208037 | 655.5 | 1.40\% |
| SSA1436 | 799788.38 | 8208034.83 | 611.32 | 0.78\% | SSA1492 | 796991.1 | 8208035 | 652.51 | 1.18\% |
| SSA1437 | 799739.73 | 8208037.82 | 599.68 | 0.67\% | SSA1493 | 796940.5 | 8208037 | 648.36 | 1.46\% |
| SSA1438 | 799691.77 | 8208036.48 | 581.15 | 0.67\% | SSA1494 | 796889.3 | 8208036 | 655.05 | 1.29\% |
| SSA1439 | 799634.06 | 8208050.23 | 581.78 | 2.54\% | SSA1495 | 796841.5 | 8208037 | 660.8 | 1.33\% |
| SSA1440 | 799589.44 | 8208035.33 | 587.48 | 2.48\% | SSA1496 | 796788.3 | 8208036 | 675.37 | 1.27\% |
| SSA1441 | 799536.72 | 8208038.37 | 563.59 | 2.48\% | SSA1497 | 796739.4 | 8208036 | 685.68 | 1.42\% |
| SSA1442 | 799491.24 | 8208038.22 | 575.04 | 1.59\% | SSA1498 | 796783 | 8207638 | 596.85 | 1.51\% |
| SSA1443 | 799491.24 | 8208038.22 | 575.04 | 0.75\% | SSA1499 | 796833.5 | 8207635 | 597.01 | 1.44\% |
| SSA1444 | 799439.55 | 8208038.04 | 584.72 | 3.57\% | SSA1500 | 796884.7 | 8207638 | 602.65 | 1.03\% |
| SSA1445 | 799389.05 | 8208039.06 | 585.25 | 2.24\% | SSA1501 | 796933 | 8207638 | 609.84 | 1.03\% |
| SSA1446 | 799343.32 | 8208036.91 | 571.02 | 2.43\% | SSA1502 | 796983.7 | 8207639 | 606.53 | 1.16\% |
| SSA1447 | 799290.16 | 8208038.86 | 591.65 | 1.46\% | SSA1503 | 796983.7 | 8207639 | 606.53 | 1.18\% |
| SSA1448 | 799238.32 | 8208035.47 | 594.79 | 1.46\% | SSA1504 | 797032.1 | 8207638 | 600.35 | 0.82\% |
| SSA1449 | 799190.61 | 8208037.22 | 586.96 | 1.46\% | SSA1505 | 797084.5 | 8207636 | 599.14 | 1.33\% |
| SSA1450 | 799138.83 | 8208038.15 | 578.81 | 1.59\% | SSA1506 | 797134.7 | 8207639 | 599.36 | 0.84\% |
| SSA1451 | 799090.89 | 8208038.47 | 577.7 | 0.95\% | SSA1507 | 797183.6 | 8207640 | 599.65 | 1.03\% |
| SSA1452 | 799042.27 | 8208036.48 | 574.77 | 1.46\% | SSA1508 | 797234.4 | 8207637 | 576.76 | 1.12\% |
| SSA1453 | 798990.89 | 8208035.29 | 563.87 | 1.72\% | SSA1509 | 797285.6 | 8207637 | 563.18 | 0.90\% |
| SSA1454 | 798938.67 | 8208035.45 | 566.9 | 1.10\% | SSA1510 | 797334.8 | 8207634 | 576.95 | 0.97\% |
| SSA1455 | 798842.02 | 8208034.99 | 573.16 | 1.59\% | SSA1511 | 797385.7 | 8207639 | 566.36 | 1.23\% |
| SSA1456 | 798790.87 | 8208035.47 | 569.63 | 2.05\% | SSA1512 | 797435.8 | 8207638 | 580.23 | 0.90\% |
| SSA1457 | 798740.24 | 8208034.5 | 564.28 | 0.93\% | SSA1513 | 797485.6 | 8207636 | 573.42 | 0.86\% |
| SSA1458 | 798692.23 | 8208037.25 | 561.68 | 0.65\% | SSA1514 | 797533.6 | 8207638 | 561.63 | 1.33\% |
| SSA1459 | 798642.22 | 8208034.83 | 558.48 | 2.00\% | SSA1515 | 797582.6 | 8207619 | 552.53 | 1.42\% |
| SSA1460 | 798591.53 | 8208037.85 | 555.41 | 1.89\% | SSA1516 | 797636.7 | 8207626 | 553.31 | 1.10\% |
| SSA1461 | 798491.09 | 8208033.68 | 583.32 | 1.33\% | SSA1517 | 797684.6 | 8207639 | 549.46 | 1.87\% |
| SSA1462 | 798441.36 | 8208035.9 | 587.56 | 1.14\% | SSA1518 | 797731.5 | 8207637 | 539.01 | 1.66\% |
| SSA1464 | 798388.17 | 8208035.74 | 588.8 | 1.25\% | SSA1519 | 797785.2 | 8207639 | 544.35 | 1.27\% |
| SSA1465 | 798339.08 | 8208037.74 | 577.52 | 1.03\% | SSA1520 | 797836 | 8207639 | 547.44 | 1.03\% |
| SSA1466 | 798292.1 | 8208038.49 | 560.65 | 1.51\% | SSA1521 | 797886.5 | 8207636 | 542.78 | 0.95\% |
| SSA1467 | 798242.2 | 8208035.73 | 554.2 | 2.30\% | SSA1522 | 797932.4 | 8207635 | 540.16 | 0.97\% |
| SSA1468 | 798140.44 | 8208037 | 559.91 | 0.58\% | SSA1524 | 797983.4 | 8207636 | 547.66 | 0.93\% |
| SSA1469 | 798089.91 | 8208035.7 | 574.02 | 0.86\% | SSA1525 | 798034 | 8207637 | 554.48 | 0.75\% |
| SSA1470 | 798038.78 | 8208037.61 | 584.89 | 1.18\% | SSA1526 | 798084.1 | 8207636 | 566.89 | 0.99\% |
| SSA1471 | 797989.43 | 8208036.62 | 586.23 | 0.52\% | SSA1527 | 798132.8 | 8207637 | 572.38 | 0.95\% |
| SSA1472 | 797939.67 | 8208036.85 | 574.13 | 0.52\% | SSA1528 | 798183.1 | 8207637 | 580.08 | 0.99\% |
| SSA1473 | 797887.77 | 8208036.67 | 568.56 | 1.10\% | SSA1529 | 798233.8 | 8207635 | 592.23 | 0.73\% |
| SSA1474 | 797840.05 | 8208037.76 | 572.7 | 1.85\% | SSA1530 | 798285.7 | 8207638 | 600.01 | 0.84\% |
| SSA1475 | 797790.07 | 8208037.33 | 567.41 | 0.82\% | SSA1531 | 798334.7 | 8207638 | 609.19 | 1.01\% |
| SSA1476 | 797739.21 | 8208035.47 | 581.97 | 0.84\% | SSA1532 | 798383.9 | 8207636 | 604.34 | 1.05\% |
| SSA1477 | 797688.61 | 8208036.6 | 593.84 | 0.43\% | SSA1533 | 798433.4 | 8207641 | 595.16 | 1.38\% |
| SSA1478 | 797639.17 | 8208036.49 | 606.57 | 0.78\% | SSA1534 | 798481.6 | 8207638 | 591.23 | 1.77\% |
| SSA1479 | 797589.3 | 8208036.73 | 611.1 | 0.41\% | SSA1535 | 798532.7 | 8207638 | 602.56 | 1.66\% |
| SSA1480 | 797538.91 | 8208038.07 | 613.33 | 0.11\% | SSA1536 | 798582.7 | 8207637 | 607.53 | 1.18\% |
| SSA1481 | 797487.1 | 8208037.12 | 601.02 | 0.11\% | SSA1537 | 798634.7 | 8207640 | 616.83 | 1.14\% |
| SSA1482 | 797439.26 | 8208036.55 | 581.31 | 0.34\% | SSA1538 | 798683.4 | 8207639 | 601.19 | 1.42\% |
| SSA1483 | 797439.26 | 8208036.88 | 582.34 | 0.34\% | SSA1539 | 798736.1 | 8207637 | 603.34 | 1.29\% |
| SSA1484 | 797389.93 | 8208036.99 | 591.05 | 1.70\% | SSA1540 | 798787.5 | 8207635 | 594.44 | 1.18\% |
| SSA1485 | 797339.31 | 8208036.57 | 608.89 | 0.86\% | SSA1541 | 798837.3 | 8207638 | 607.13 | 2.09\% |
| SSA1486 | 797289.98 | 8208037.13 | 614.8 | 1.14\% | SSA1542 | 798882.8 | 8207639 | 611.77 | 1.42\% |


| Sample ID | UTM_X | UTM_Y | Elevation | $\mathrm{Li}_{2} \mathrm{O} \%$ | Sample ID | UTM_X | UTM_Y | Elevation | Li20 \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SSA1543 | 798883.2 | 8207640 | 608.89 | 1.31\% | SSA1599 | 798479.9 | 8207237 | 607.12 | 1.83\% |
| SSA1544 | 798934.6 | 8207635 | 610.55 | 1.36\% | SSA1600 | 798428.4 | 8207237 | 600.86 | 1.59\% |
| SSA1545 | 798985.7 | 8207638 | 607.96 | 1.92\% | SSA1601 | 798378.4 | 8207236 | 601.26 | 1.55\% |
| SSA1546 | 799034.8 | 8207637 | 609.33 | 3.23\% | SSA1602 | 798328.6 | 8207240 | 598.59 | 1.59\% |
| SSA1547 | 799083.4 | 8207637 | 612.91 | 2.20\% | SSA1603 | 798329.7 | 8207238 | 597.57 | 1.59\% |
| SSA1548 | 799134.8 | 8207637 | 609.46 | 4.24\% | SSA1604 | 798277.2 | 8207239 | 595.76 | 1.10\% |
| SSA1549 | 799185.8 | 8207639 | 598.46 | 3.62\% | SSA1605 | 798228.8 | 8207237 | 600.5 | 1.05\% |
| SSA1550 | 799235.4 | 8207639 | 609.51 | 2.45\% | SSA1606 | 798178.2 | 8207239 | 585.77 | 1.74\% |
| SSA1551 | 799284.6 | 8207637 | 622.3 | 3.21\% | SSA1607 | 798129.4 | 8207235 | 580.7 | 1.10\% |
| SSA1552 | 799333.5 | 8207643 | 632.36 | 2.82\% | SSA1608 | 798076.1 | 8207235 | 580.85 | 1.03\% |
| SSA1553 | 799385.1 | 8207639 | 634.73 | 2.80\% | SSA1609 | 798027.3 | 8207237 | 574.95 | 0.78\% |
| SSA1554 | 799435.8 | 8207638 | 626.36 | 2.48\% | SSA1610 | 797976.7 | 8207235 | 563.38 | 0.93\% |
| SSA1555 | 799485 | 8207637 | 630.28 | 2.48\% | SSA1611 | 797930.8 | 8207235 | 576.72 | 1.70\% |
| SSA1556 | 799535.1 | 8207636 | 635.52 | 2.26\% | SSA1612 | 797878.8 | 8207239 | 583.05 | 1.05\% |
| SSA1557 | 799584.4 | 8207636 | 626.8 | 2.20\% | SSA1613 | 797830.2 | 8207238 | 591.36 | 1.29\% |
| SSA1558 | 799634.8 | 8207637 | 607.22 | 1.92\% | SSA1614 | 797779.2 | 8207236 | 588.63 | 1.01\% |
| SSA1559 | 799686.2 | 8207651 | 578.74 | 4.46\% | SSA1615 | 797727 | 8207239 | 593.24 | 0.90\% |
| SSA1560 | 799733.2 | 8207637 | 595.07 | 1.55\% | SSA1616 | 797679.4 | 8207238 | 584.49 | 1.08\% |
| SSA1561 | 799784.1 | 8207640 | 609.04 | 1.14\% | SSA1617 | 797627.6 | 8207235 | 573.76 | 1.14\% |
| SSA1562 | 799836.8 | 8207637 | 627.59 | 0.99\% | SSA1618 | 797578.3 | 8207234 | 580.54 | 1.27\% |
| SSA1563 | 799836.8 | 8207637 | 627.59 | 1.03\% | SSA1619 | 797529.7 | 8207234 | 584.46 | 0.86\% |
| SSA1564 | 799885.6 | 8207639 | 647.72 | 1.05\% | SSA1620 | 797480.1 | 8207236 | 583.24 | 1.77\% |
| SSA1565 | 799934.6 | 8207640 | 664.07 | 1.40\% | SSA1621 | 797428.2 | 8207234 | 580.74 | 1.29\% |
| SSA1566 | 799985.4 | 8207638 | 674.65 | 1.57\% | SSA1622 | 797428.2 | 8207234 | 580.74 | 0.71\% |
| SSA1567 | 800036.7 | 8207639 | 677.34 | 2.67\% | SSA1623 | 797380 | 8207234 | 559.67 | 1.44\% |
| SSA1568 | 799978.8 | 8207240 | 622.53 | 1.64\% | SSA1624 | 797330.8 | 8207234 | 547.5 | 1.53\% |
| SSA1569 | 799931.3 | 8207235 | 638.11 | 1.40\% | SSA1625 | 797279.5 | 8207235 | 543.47 | 1.87\% |
| SSA1570 | 799881.9 | 8207239 | 637.13 | 1.87\% | SSA1626 | 797180.3 | 8207238 | 551.69 | 1.40\% |
| SSA1571 | 799828.5 | 8207237 | 633.51 | 3.70\% | SSA1627 | 797130 | 8207239 | 579.91 | 0.80\% |
| SSA1572 | 799780.4 | 8207238 | 620.52 | 4.78\% | SSA1628 | 797080.5 | 8207236 | 575.38 | 1.25\% |
| SSA1573 | 799731.7 | 8207237 | 600.38 | 3.23\% | SSA1629 | 797027.3 | 8207236 | 566.76 | 1.42\% |
| SSA1574 | 799675.1 | 8207236 | 616.32 | 8.10\% | SSA1630 | 796977.1 | 8207239 | 559.1 | 1.14\% |
| SSA1575 | 799630.5 | 8207237 | 630.39 | 6.24\% | SSA1631 | 796929.4 | 8207239 | 562.57 | 1.42\% |
| SSA1576 | 799579.2 | 8207236 | 641.12 | 7.26\% | SSA1632 | 796877 | 8207237 | 577.3 | 1.03\% |
| SSA1577 | 799528.6 | 8207237 | 659.98 | 5.75\% | SSA1633 | 796826.8 | 8207239 | 599.91 | 1.49\% |
| SSA1578 | 799480.4 | 8207239 | 662.42 | 3.79\% | SSA1634 | 796778 | 8207238 | 611.12 | 1.18\% |
| SSA1579 | 799430.9 | 8207239 | 668.61 | 3.57\% | SSA1635 | 796974.1 | 8206838 | 522.91 | 0.71\% |
| SSA1580 | 799378.8 | 8207237 | 670.09 | 4.16\% | SSA1636 | 797022.7 | 8206835 | 538.98 | 0.73\% |
| SSA1581 | 799328.3 | 8207235 | 673.69 | 3.29\% | SSA1637 | 797076.2 | 8206837 | 554.45 | 0.73\% |
| SSA1582 | 799279.5 | 8207234 | 666.04 | 2.78\% | SSA1638 | 797123.7 | 8206841 | 562.14 | 0.39\% |
| SSA1584 | 799230.1 | 8207234 | 654.64 | 1.83\% | SSA1639 | 797173.4 | 8206838 | 571.91 | 0.86\% |
| SSA1585 | 799180.3 | 8207236 | 644.73 | 1.59\% | SSA1640 | 797221 | 8206836 | 578.17 | 0.41\% |
| SSA1586 | 799131.7 | 8207235 | 632.91 | 1.51\% | SSA1641 | 797272.9 | 8206834 | 584.88 | 0.37\% |
| SSA1587 | 799079.7 | 8207234 | 638.49 | 1.21\% | SSA1643 | 797322.2 | 8206835 | 597.31 | 0.11\% |
| SSA1588 | 799029.1 | 8207235 | 645.88 | 1.12\% | SSA1644 | 797373.4 | 8206838 | 596.14 | 0.60\% |
| SSA1589 | 798978.5 | 8207234 | 652.74 | 1.18\% | SSA1645 | 797422.1 | 8206839 | 585.8 | 0.11\% |
| SSA1590 | 798931 | 8207234 | 649.69 | 1.49\% | SSA1646 | 797472.6 | 8206839 | 579.19 | 0.37\% |
| SSA1591 | 798886.1 | 8207233 | 646.44 | 1.23\% | SSA1647 | 797522.9 | 8206835 | 585.06 | 0.62\% |
| SSA1592 | 798829.9 | 8207237 | 648.45 | 1.01\% | SSA1648 | 797573.2 | 8206834 | 586.73 | 0.11\% |
| SSA1593 | 798780.1 | 8207239 | 644.92 | 1.49\% | SSA1649 | 797621.9 | 8206836 | 580.58 | 0.71\% |
| SSA1594 | 798729.6 | 8207237 | 648.55 | 1.31\% | SSA1650 | 797672.3 | 8206839 | 600.98 | 0.88\% |
| SSA1595 | 798676.3 | 8207237 | 638.58 | 1.12\% | SSA1651 | 797723.5 | 8206837 | 619.35 | 0.56\% |
| SSA1596 | 798627.5 | 8207239 | 634.98 | 1.55\% | SSA1652 | 797771.7 | 8206835 | 634.41 | 0.62\% |
| SSA1597 | 798578.1 | 8207240 | 621.8 | 1.36\% | SSA1653 | 797822.7 | 8206839 | 627.27 | 0.99\% |
| SSA1598 | 798528.2 | 8207234 | 615.32 | 1.92\% | SSA1654 | 797873.9 | 8206840 | 633.96 | 0.67\% |


| Sample ID | UTM_X | UTM_Y | Elevation | $\mathrm{Li}_{2} \mathrm{O} \%$ | Sample ID | UTM_X | UTM_Y | Elevation | Li20 \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SSA1655 | 797921 | 8206837 | 634.68 | 0.88\% | SSA1711 | 799517.3 | 8206438 | 665.05 | 1.27\% |
| SSA1656 | 797976.3 | 8206837 | 632.97 | 0.28\% | SSA1712 | 799469.4 | 8206434 | 669.89 | 1.42\% |
| SSA1657 | 798024 | 8206838 | 631.13 | 0.86\% | SSA1713 | 799418.4 | 8206438 | 673.71 | 1.89\% |
| SSA1658 | 798073 | 8206840 | 634.28 | 1.08\% | SSA1714 | 799368.9 | 8206439 | 660.71 | 1.55\% |
| SSA1659 | 798122.8 | 8206836 | 630.6 | 0.88\% | SSA1715 | 799318.5 | 8206436 | 661.21 | 1.25\% |
| SSA1660 | 798174 | 8206839 | 640.06 | 0.67\% | SSA1716 | 799266.7 | 8206436 | 655.23 | 1.21\% |
| SSA1661 | 798224.3 | 8206839 | 649.18 | 0.11\% | SSA1717 | 799215.9 | 8206437 | 647.88 | 0.95\% |
| SSA1662 | 798224.8 | 8206841 | 647.54 | 0.11\% | SSA1718 | 799167.5 | 8206438 | 639.01 | 0.73\% |
| SSA1663 | 798274.6 | 8206840 | 648.24 | 0.71\% | SSA1719 | 799119.7 | 8206437 | 627.03 | 0.93\% |
| SSA1664 | 798324.6 | 8206838 | 639.84 | 0.65\% | SSA1720 | 799069 | 8206435 | 620.68 | 1.14\% |
| SSA1665 | 798373.1 | 8206836 | 643.6 | 0.62\% | SSA1721 | 799018.3 | 8206435 | 614.83 | 1.08\% |
| SSA1666 | 798421.9 | 8206838 | 655.59 | 0.60\% | SSA1722 | 799018.5 | 8206434 | 615.33 | 1.08\% |
| SSA1667 | 798471.6 | 8206836 | 671.03 | 0.95\% | SSA1723 | 798967.2 | 8206434 | 620.11 | 0.75\% |
| SSA1668 | 798521.4 | 8206839 | 673.15 | 0.88\% | SSA1724 | 798918 | 8206434 | 628.24 | 0.80\% |
| SSA1669 | 798573.6 | 8206840 | 669.97 | 1.08\% | SSA1725 | 798868.4 | 8206437 | 630.42 | 0.82\% |
| SSA1670 | 798622.3 | 8206837 | 685.47 | 0.86\% | SSA1726 | 798819.5 | 8206435 | 631.79 | 0.65\% |
| SSA1671 | 798673.1 | 8206840 | 693.22 | 1.12\% | SSA1727 | 798767.1 | 8206434 | 625.42 | 0.90\% |
| SSA1672 | 798724.6 | 8206841 | 696.97 | 0.11\% | SSA1728 | 798719.9 | 8206436 | 626.66 | 1.01\% |
| SSA1673 | 798772.7 | 8206840 | 712.3 | 0.88\% | SSA1729 | 798668.8 | 8206436 | 625.09 | 0.84\% |
| SSA1674 | 798822.3 | 8206840 | 721.81 | 1.57\% | SSA1730 | 798619.7 | 8206436 | 637.73 | 0.86\% |
| SSA1675 | 798872.4 | 8206839 | 720.4 | 0.71\% | SSA1731 | 798568.7 | 8206438 | 652.08 | 1.25\% |
| SSA1676 | 798922.1 | 8206837 | 708.71 | 0.86\% | SSA1732 | 798519.2 | 8206438 | 661.48 | 1.55\% |
| SSA1677 | 798973.4 | 8206837 | 701.53 | 0.45\% | SSA1733 | 798469.3 | 8206436 | 666.95 | 1.74\% |
| SSA1678 | 799025.8 | 8206836 | 694.14 | 1.55\% | SSA1734 | 798419.3 | 8206434 | 673.41 | 2.09\% |
| SSA1679 | 799073.8 | 8206840 | 692.08 | 1.53\% | SSA1735 | 798368.3 | 8206439 | 675.72 | 2.30\% |
| SSA1680 | 799123.8 | 8206840 | 692.02 | 2.13\% | SSA1736 | 798318.4 | 8206437 | 662.92 | 1.66\% |
| SSA1681 | 799174.7 | 8206839 | 685.3 | 1.12\% | SSA1737 | 798270.8 | 8206437 | 626.73 | 1.66\% |
| SSA1682 | 799174.7 | 8206839 | 685.3 | 1.79\% | SSA1738 | 798214.6 | 8206437 | 609.03 | 1.38\% |
| SSA1683 | 799225.4 | 8206836 | 681.93 | 1.59\% | SSA1739 | 798169.2 | 8206436 | 603.95 | 1.33\% |
| SSA1684 | 799273.8 | 8206838 | 674.51 | 1.12\% | SSA1740 | 798120.3 | 8206434 | 598.96 | 1.27\% |
| SSA1685 | 799324.3 | 8206836 | 672.84 | 0.52\% | SSA1741 | 798068.3 | 8206434 | 612.54 | 0.99\% |
| SSA1686 | 799372.6 | 8206834 | 666.5 | 0.60\% | SSA1742 | 798068.3 | 8206434 | 612.54 | 1.61\% |
| SSA1687 | 799421 | 8206836 | 655 | 0.58\% | SSA1743 | 798018.9 | 8206435 | 625.78 | 1.18\% |
| SSA1688 | 799475.7 | 8206837 | 658.29 | 0.62\% | SSA1744 | 797970.1 | 8206435 | 622.91 | 1.18\% |
| SSA1689 | 799526.1 | 8206837 | 663.19 | 1.49\% | SSA1745 | 797920.7 | 8206435 | 625.25 | 1.10\% |
| SSA1690 | 799574 | 8206838 | 657.95 | 1.55\% | SSA1746 | 797870.5 | 8206437 | 617.98 | 1.36\% |
| SSA1691 | 799622.8 | 8206838 | 653.02 | 2.13\% | SSA1747 | 797817.1 | 8206438 | 601.28 | 1.25\% |
| SSA1692 | 799674.9 | 8206837 | 655.67 | 4.24\% | SSA1748 | 797770.1 | 8206436 | 595.06 | 1.23\% |
| SSA1693 | 799720.2 | 8206837 | 661.12 | 2.52\% | SSA1749 | 797717.4 | 8206437 | 605.65 | 1.31\% |
| SSA1694 | 799774.7 | 8206837 | 652.08 | 3.75\% | SSA1750 | 797666.8 | 8206435 | 603.62 | 1.31\% |
| SSA1695 | 799822.1 | 8206839 | 660.24 | 7.94\% | SSA1751 | 797616.7 | 8206439 | 613.91 | 1.31\% |
| SSA1696 | 799873.5 | 8206838 | 681.33 | 8.14\% | SSA1752 | 797567.4 | 8206438 | 614.16 | 1.27\% |
| SSA1697 | 799922.8 | 8206835 | 684.63 | 5.60\% | SSA1753 | 797514.7 | 8206435 | 613.86 | 1.18\% |
| SSA1698 | 799970.7 | 8206837 | 679.98 | 3.83\% | SSA1754 | 797465.8 | 8206434 | 613.59 | 1.36\% |
| SSA1699 | 800021.7 | 8206834 | 672.27 | 3.94\% | SSA1755 | 797415.6 | 8206436 | 606.92 | 1.18\% |
| SSA1700 | 800018 | 8206435 | 683.82 | 1.68\% | SSA1756 | 797369.9 | 8206435 | 593.28 | 1.03\% |
| SSA1701 | 799967.6 | 8206436 | 683.35 | 2.41\% | SSA1757 | 797317.3 | 8206439 | 602.14 | 1.21\% |
| SSA1703 | 799919.9 | 8206436 | 680.05 | 1.49\% | SSA1758 | 797268.3 | 8206437 | 607.78 | 1.25\% |
| SSA1704 | 799869.3 | 8206434 | 676.34 | 1.42\% | SSA1759 | 797218.2 | 8206438 | 610.78 | 1.08\% |
| SSA1705 | 799818.5 | 8206436 | 670.85 | 2.24\% | SSA1760 | 797168.9 | 8206438 | 604.86 | 1.29\% |
| SSA1706 | 799767.7 | 8206436 | 664.05 | 1.23\% | SSA1761 | 797117.6 | 8206434 | 593.93 | 0.90\% |
| SSA1707 | 799718.6 | 8206439 | 658.04 | 1.21\% | SSA1763 | 797070.1 | 8206438 | 604.4 | 0.71\% |
| SSA1708 | 799669.7 | 8206439 | 657.81 | 1.14\% | SSA1764 | 797019.3 | 8206435 | 613.79 | 0.56\% |
| SSA1709 | 799617.8 | 8206436 | 659.97 | 1.10\% | SSA1765 | 796966.9 | 8206436 | 609.17 | 0.65\% |
| SSA1710 | 799568.5 | 8206437 | 662.65 | 1.12\% | SSA1766 | 796915.5 | 8206438 | 592.62 | 1.10\% |


| Sample ID | UTM_X | UTM_Y | Elevation | Li, O \% | Sample ID | UTM_X | UTM_Y | Elevation | $\mathrm{Li}_{2} \mathrm{O}$ \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SSA1767 | 796868.3 | 8206441 | 563.15 | 1.12\% | SSA1823 | 799413.7 | 8206024 | 605.57 | 0.65\% |
| SSA1768 | 796813.2 | 8206434 | 541.65 | 1.14\% | SSA1824 | 799461.5 | 8206038 | 611.59 | 0.78\% |
| SSA1769 | 796762.9 | 8206036 | 532.76 | 3.14\% | SSA1825 | 799515.3 | 8206039 | 617.83 | 0.84\% |
| SSA1770 | 796912.4 | 8206034 | 539.97 | 2.80\% | SSA1826 | 799560.9 | 8206039 | 621.77 | 1.05\% |
| SSA1771 | 796961.5 | 8206036 | 541.41 | 1.05\% | SSA1827 | 799612 | 8206034 | 612.72 | 1.98\% |
| SSA1772 | 797009.9 | 8206035 | 545.33 | 1.10\% | SSA1828 | 799712.1 | 8206035 | 625.73 | 0.67\% |
| SSA1773 | 797060.4 | 8206037 | 549.11 | 1.01\% | SSA1829 | 799763.9 | 8206036 | 633.3 | 0.52\% |
| SSA1774 | 797112.2 | 8206039 | 542.99 | 0.82\% | SSA1830 | 799814.4 | 8206038 | 637.77 | 0.82\% |
| SSA1775 | 797161.2 | 8206039 | 551.75 | 0.90\% | SSA1831 | 799862.5 | 8206034 | 643.06 | 1.03\% |
| SSA1776 | 797211.4 | 8206039 | 557.68 | 0.86\% | SSA1832 | 799912.4 | 8206036 | 648.28 | 1.44\% |
| SSA1777 | 797260.3 | 8206039 | 560.54 | 0.73\% | SSA1833 | 799962.7 | 8206035 | 655.08 | 1.29\% |
| SSA1778 | 797312.3 | 8206037 | 562.99 | 0.80\% | SSA1834 | 800013.3 | 8206036 | 656.69 | 1.29\% |
| SSA1779 | 797362.2 | 8206037 | 564.41 | 0.78\% | SSA1835 | 800002.1 | 8205438 | 677.96 | 0.82\% |
| SSA1780 | 797412 | 8206036 | 559.62 | 0.99\% | SSA1836 | 799954.7 | 8205436 | 671.97 | 0.90\% |
| SSA1781 | 797465.8 | 8206036 | 551.37 | 1.03\% | SSA1837 | 799907.5 | 8205437 | 661.18 | 0.78\% |
| SSA1782 | 797466.5 | 8206037 | 549.26 | 0.80\% | SSA1838 | 799855.3 | 8205437 | 650.69 | 0.67\% |
| SSA1783 | 797513.8 | 8206036 | 554.47 | 1.14\% | SSA1839 | 799805.4 | 8205435 | 644.49 | 0.34\% |
| SSA1784 | 797561.8 | 8206035 | 573.13 | 0.97\% | SSA1840 | 799752.1 | 8205437 | 636.58 | 0.73\% |
| SSA1785 | 797613 | 8206035 | 576.61 | 0.93\% | SSA1841 | 799703.3 | 8205436 | 631.82 | 0.67\% |
| SSA1786 | 797663.9 | 8206035 | 580.29 | 0.75\% | SSA1842 | 799704.5 | 8205438 | 630.56 | 0.54\% |
| SSA1787 | 797714.6 | 8206036 | 580.72 | 0.75\% | SSA1843 | 799603.1 | 8205435 | 620.1 | 0.60\% |
| SSA1788 | 797762.7 | 8206034 | 578.49 | 0.69\% | SSA1844 | 799556 | 8205436 | 612.28 | 0.80\% |
| SSA1789 | 797813.7 | 8206036 | 578.03 | 0.71\% | SSA1845 | 799503 | 8205434 | 621.16 | 0.65\% |
| SSA1790 | 797862.8 | 8206037 | 586.61 | 0.73\% | SSA1846 | 799454.9 | 8205437 | 630.12 | 0.11\% |
| SSA1791 | 797912.5 | 8206038 | 581.42 | 0.78\% | SSA1847 | 799405.4 | 8205434 | 635.58 | 1.77\% |
| SSA1792 | 797963.5 | 8206039 | 575.72 | 0.80\% | SSA1848 | 799355.4 | 8205435 | 638.52 | 0.80\% |
| SSA1793 | 798014.4 | 8206038 | 567.87 | 0.95\% | SSA1849 | 799305.3 | 8205435 | 641.99 | 1.21\% |
| SSA1794 | 798063.5 | 8206034 | 578.69 | 1.01\% | SSA1850 | 799255.1 | 8205437 | 637.68 | 1.03\% |
| SSA1795 | 798113.8 | 8206037 | 590.87 | 0.93\% | SSA1851 | 799205.4 | 8205439 | 634.38 | 0.88\% |
| SSA1796 | 798163.5 | 8206034 | 596.35 | 1.03\% | SSA1852 | 799157 | 8205439 | 632.05 | 1.36\% |
| SSA1797 | 798215.4 | 8206035 | 597.28 | 0.58\% | SSA1853 | 799106.6 | 8205437 | 627.98 | 1.53\% |
| SSA1798 | 798259.5 | 8206037 | 593.34 | 0.58\% | SSA1854 | 799054.8 | 8205439 | 625.16 | 1.33\% |
| SSA1799 | 798313.9 | 8206040 | 596.26 | 0.34\% | SSA1855 | 799003.6 | 8205437 | 616.35 | 1.61\% |
| SSA1800 | 798362.4 | 8206038 | 600.2 | 0.56\% | SSA1856 | 798953.3 | 8205436 | 613.81 | 1.40\% |
| SSA1801 | 798412.9 | 8206037 | 597.3 | 0.62\% | SSA1857 | 798905.6 | 8205440 | 615.34 | 1.03\% |
| SSA1802 | 798412.9 | 8206037 | 597.3 | 1.08\% | SSA1858 | 798855.5 | 8205435 | 620.13 | 1.01\% |
| SSA1803 | 798464.8 | 8206037 | 600.22 | 0.47\% | SSA1859 | 798803 | 8205436 | 623.99 | 1.59\% |
| SSA1804 | 798511.3 | 8206035 | 602.98 | 0.56\% | SSA1860 | 798753.5 | 8205438 | 624.22 | 2.22\% |
| SSA1805 | 798562.9 | 8206037 | 603.84 | 0.86\% | SSA1861 | 798703.7 | 8205437 | 622.79 | 1.55\% |
| SSA1806 | 798610.8 | 8206036 | 601.31 | 0.24\% | SSA1862 | 798703.7 | 8205437 | 622.79 | 1.77\% |
| SSA1807 | 798660.6 | 8206035 | 595.1 | 0.39\% | SSA1863 | 798652.5 | 8205438 | 625.96 | 1.36\% |
| SSA1808 | 798712.9 | 8206037 | 592.54 | 0.67\% | SSA1864 | 798604.1 | 8205436 | 618.19 | 1.27\% |
| SSA1809 | 798762.5 | 8206037 | 598.35 | 0.88\% | SSA1865 | 798552.9 | 8205437 | 612.96 | 1.12\% |
| SSA1810 | 798812.5 | 8206035 | 605.87 | 0.65\% | SSA1866 | 798505.8 | 8205435 | 603.7 | 1.55\% |
| SSA1811 | 798864.5 | 8206036 | 608.67 | 0.52\% | SSA1867 | 798454.2 | 8205433 | 594.44 | 1.29\% |
| SSA1812 | 798911.6 | 8206036 | 611.23 | 0.67\% | SSA1868 | 798405.5 | 8205436 | 583.99 | 1.61\% |
| SSA1813 | 798963.6 | 8206038 | 619.17 | 0.43\% | SSA1869 | 798355.5 | 8205434 | 585.78 | 1.57\% |
| SSA1814 | 799010.9 | 8206038 | 617.98 | 0.45\% | SSA1870 | 798303.6 | 8205434 | 578.98 | 1.66\% |
| SSA1815 | 799061.6 | 8206039 | 625.27 | 0.37\% | SSA1871 | 798254.7 | 8205435 | 575.62 | 1.40\% |
| SSA1816 | 799111 | 8206037 | 634.07 | 0.24\% | SSA1872 | 798205.5 | 8205435 | 570.4 | 1.42\% |
| SSA1817 | 799162.4 | 8206040 | 644.4 | 0.56\% | SSA1873 | 798154.4 | 8205435 | 568.96 | 1.46\% |
| SSA1818 | 799213.8 | 8206039 | 652.16 | 0.11\% | SSA1874 | 798107.9 | 8205437 | 568.72 | 1.10\% |
| SSA1819 | 799260.9 | 8206039 | 652.37 | 0.47\% | SSA1875 | 798055.8 | 8205434 | 567.27 | 1.49\% |
| SSA1820 | 799313.3 | 8206037 | 646.02 | 0.75\% | SSA1876 | 798006.4 | 8205434 | 567.21 | 1.44\% |
| SSA1821 | 799362.9 | 8206038 | 636.12 | 0.41\% | SSA1877 | 797956.6 | 8205434 | 565.67 | 1.25\% |


| Sample ID | UTM_X | UTM_Y | Elevation | Li $_{2} \mathrm{O} \%$ |
| :---: | :---: | :---: | :---: | :---: |
| SSA1878 | 797905.7 | 8205435 | 563.48 | $1.40 \%$ |
| SSA1879 | 797854.8 | 8205437 | 561.33 | $1.33 \%$ |
| SSA1880 | 797804.8 | 8205435 | 555.35 | $1.38 \%$ |
| SSA1881 | 797755.2 | 8205436 | 548.11 | $1.40 \%$ |
| SSA1883 | 797657.1 | 8205438 | 549.65 | $1.21 \%$ |
| SSA1884 | 797604.3 | 8205436 | 553.74 | $1.33 \%$ |
| SSA1885 | 797555.4 | 8205435 | 552.66 | $1.21 \%$ |
| SSA1886 | 797504.1 | 8205436 | 548.22 | $1.31 \%$ |
| SSA1887 | 797456 | 8205437 | 546.35 | $1.31 \%$ |
| SSA1888 | 797404.5 | 8205437 | 543.37 | $1.31 \%$ |
| SSA1889 | 797354.7 | 8205435 | 540.39 | $1.57 \%$ |
| SSA1890 | 797304.5 | 8205424 | 536.93 | $1.51 \%$ |
| SSA1891 | 797002.5 | 8205435 | 525.58 | $1.38 \%$ |
| SSA1892 | 796954.2 | 8205437 | 525.01 | $1.27 \%$ |
| SSA1893 | 796903.1 | 8205436 | 523.15 | $1.46 \%$ |
| SSA1894 | 796855.3 | 8205437 | 518.3 | $1.89 \%$ |
| SSA1895 | 796769.2 | 8205474 | 522.9 | $2.93 \%$ |
| SSA2218 | 796773.4 | 8206836 | 531.75 | $2.05 \%$ |
| SSA2219 | 796818.9 | 8206852 | 533.3 | $2.54 \%$ |
| SSA2220 | 796874.5 | 8206856 | 531.06 | $1.57 \%$ |

## APPENDIX 5

FOG'S BLOCK EAST SOIL SAMPLE PROGRAM- COORDINATES AND RESULTS

| Sample ID | UTM_X | UTM_Y | Elevation | LizO \% | Sample ID | UTM_X | UTM_Y | Elevation | Li20 \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SSA2406 | 800559.00 | 8207251.14 | 534.83 | 1.53\% | SSA2460 | 801711.34 | 8207452.40 | 632.79 | 6.44\% |
| SSA2407 | 800658.74 | 8207251.22 | 599.43 | 1.81\% | SSA2461 | 801663.48 | 8207451.18 | 633.83 | 4.76\% |
| SSA2408 | 800707.53 | 8207250.22 | 610.80 | 1.81\% | SSA2462 | 801663.48 | 8207451.18 | 633.83 | 5.45\% |
| SSA2409 | 800759.54 | 8207250.72 | 620.73 | 2.33\% | SSA2463 | 801611.07 | 8207453.23 | 648.41 | 3.92\% |
| SSA2410 | 800807.40 | 8207260.03 | 621.70 | 1.68\% | SSA2464 | 801561.93 | 8207451.47 | 653.59 | 3.75\% |
| SSA2411 | 800857.47 | 8207251.71 | 620.10 | 1.57\% | SSA2465 | 801510.45 | 8207451.62 | 651.11 | 2.86\% |
| SSA2412 | 800906.72 | 8207253.13 | 641.57 | 2.00\% | SSA2466 | 801461.00 | 8207450.53 | 646.05 | 2.35\% |
| SSA2413 | 800958.47 | 8207249.77 | 634.20 | 2.41\% | SSA2467 | 801412.42 | 8207451.20 | 650.98 | 2.00\% |
| SSA2414 | 801007.82 | 8207251.08 | 655.04 | 2.17\% | SSA2468 | 801360.95 | 8207451.79 | 654.43 | 1.96\% |
| SSA2415 | 801058.75 | 8207250.05 | 664.38 | 1.94\% | SSA2469 | 801310.64 | 8207450.49 | 668.27 | 2.13\% |
| SSA2416 | 801108.00 | 8207251.48 | 653.03 | 2.11\% | SSA2470 | 801260.66 | 8207450.62 | 679.10 | 2.33\% |
| SSA2417 | 801157.03 | 8207253.25 | 605.89 | 1.77\% | SSA2471 | 801212.51 | 8207451.28 | 679.10 | 1.31\% |
| SSA2418 | 801208.59 | 8207251.43 | 614.62 | 2.17\% | SSA2472 | 801160.17 | 8207450.56 | 682.96 | 1.29\% |
| SSA2419 | 801257.37 | 8207250.10 | 620.69 | 1.98\% | SSA2473 | 801111.92 | 8207451.44 | 685.55 | 1.53\% |
| SSA2420 | 801307.25 | 8207304.90 | 622.32 | 1.70\% | SSA2474 | 801060.33 | 8207451.04 | 685.59 | 1.68\% |
| SSA2421 | 801358.86 | 8207307.07 | 629.73 | 1.89\% | SSA2475 | 801010.25 | 8207451.07 | 681.26 | 2.00\% |
| SSA2423 | 801408.63 | 8207308.05 | 617.92 | 2.17\% | SSA2476 | 800961.99 | 8207451.84 | 677.94 | 1.81\% |
| SSA2424 | 801455.71 | 8207307.51 | 615.71 | 2.43\% | SSA2477 | 800911.79 | 8207451.20 | 678.98 | 1.68\% |
| SSA2425 | 801509.20 | 8207251.51 | 626.40 | 2.65\% | SSA2478 | 800863.64 | 8207451.42 | 665.77 | 2.00\% |
| SSA2426 | 801560.03 | 8207250.92 | 638.73 | 2.35\% | SSA2479 | 800811.84 | 8207451.57 | 650.23 | 1.72\% |
| SSA2427 | 801609.26 | 8207251.35 | 649.42 | 2.26\% | SSA2480 | 800761.32 | 8207450.82 | 644.22 | 1.21\% |
| SSA2428 | 801658.93 | 8207252.66 | 658.22 | 2.24\% | SSA2481 | 800711.66 | 8207450.29 | 636.64 | 1.18\% |
| SSA2429 | 801708.55 | 8207249.88 | 666.19 | 2.54\% | SSA2483 | 800661.91 | 8207451.63 | 630.38 | 1.23\% |
| SSA2430 | 801759.83 | 8207251.17 | 671.31 | 2.76\% | SSA2484 | 800612.47 | 8207451.31 | 630.41 | 1.05\% |
| SSA2431 | 801809.89 | 8207249.26 | 673.52 | 2.65\% | SSA2485 | 800562.91 | 8207451.00 | 641.27 | 1.05\% |
| SSA2432 | 801858.16 | 8207249.93 | 674.61 | 3.60\% | SSA2486 | 800557.90 | 8207077.39 | 615.44 | 1.51\% |
| SSA2433 | 801908.46 | 8207250.23 | 676.13 | 3.14\% | SSA2487 | 800607.88 | 8207077.48 | 605.80 | 1.70\% |
| SSA2434 | 801958.67 | 8207251.09 | 670.08 | 2.39\% | SSA2488 | 800754.67 | 8207051.11 | 609.18 | 3.38\% |
| SSA2435 | 802008.12 | 8207251.63 | 661.01 | 1.81\% | SSA2489 | 800805.70 | 8207050.52 | 630.99 | 2.02\% |
| SSA2436 | 802059.15 | 8207250.59 | 656.52 | 1.94\% | SSA2490 | 800856.23 | 8207051.71 | 636.13 | 2.05\% |
| SSA2437 | 802109.02 | 8207250.35 | 647.89 | 1.68\% | SSA2491 | 800904.25 | 8207049.72 | 632.44 | 2.56\% |
| SSA2438 | 802259.39 | 8207251.49 | 627.77 | 3.79\% | SSA2492 | 800956.48 | 8207050.00 | 621.96 | 3.21\% |
| SSA2439 | 802309.14 | 8207250.25 | 623.11 | 2.02\% | SSA2493 | 801006.82 | 8207053.19 | 609.90 | 3.16\% |
| SSA2440 | 802408.88 | 8207250.32 | 640.50 | 3.08\% | SSA2494 | 801105.60 | 8207053.38 | 604.57 | 2.00\% |
| SSA2441 | 802458.65 | 8207250.74 | 649.15 | 1.83\% | SSA2495 | 801205.85 | 8207051.78 | 610.16 | 3.42\% |
| SSA2442 | 802458.01 | 8207250.86 | 649.66 | 1.92\% | SSA2496 | 801255.39 | 8207051.32 | 612.66 | 2.65\% |
| SSA2443 | 802509.39 | 8207252.25 | 639.40 | 1.51\% | SSA2497 | 801306.02 | 8207051.96 | 617.67 | 2.09\% |
| SSA2444 | 802511.51 | 8207452.69 | 618.35 | 2.45\% | SSA2498 | 801356.85 | 8207052.04 | 617.92 | 1.92\% |
| SSA2445 | 802460.43 | 8207450.18 | 612.15 | 1.74\% | SSA2499 | 801406.51 | 8207052.35 | 635.22 | 2.24\% |
| SSA2446 | 802409.82 | 8207450.88 | 638.60 | 2.63\% | SSA2500 | 801456.36 | 8207050.56 | 637.27 | 1.51\% |
| SSA2447 | 802360.05 | 8207450.45 | 653.65 | 2.15\% | SSA2501 | 801506.23 | 8207050.98 | 632.04 | 2.24\% |
| SSA2448 | 802309.45 | 8207451.37 | 661.78 | 1.94\% | SSA2502 | 801505.27 | 8207050.77 | 631.76 | 2.26\% |
| SSA2449 | 802258.84 | 8207452.07 | 656.40 | 2.26\% | SSA2503 | 801557.16 | 8207050.17 | 626.97 | 1.72\% |
| SSA2450 | 802210.78 | 8207451.62 | 635.65 | 2.15\% | SSA2504 | 801610.91 | 8207099.05 | 620.30 | 1.40\% |
| SSA2451 | 802161.01 | 8207451.42 | 642.76 | 3.10\% | SSA2505 | 801657.88 | 8207098.29 | 632.72 | 1.72\% |
| SSA2452 | 802111.15 | 8207452.22 | 662.44 | 2.05\% | SSA2506 | 801707.75 | 8207097.94 | 633.75 | 3.19\% |
| SSA2453 | 802061.17 | 8207451.58 | 676.86 | 2.02\% | SSA2507 | 801757.45 | 8207101.13 | 630.70 | 2.24\% |
| SSA2454 | 802010.84 | 8207449.61 | 689.19 | 1.94\% | SSA2508 | 801807.94 | 8207099.55 | 633.28 | 2.09\% |
| SSA2455 | 801961.53 | 8207451.18 | 685.56 | 2.13\% | SSA2509 | 801858.48 | 8207102.18 | 657.12 | 1.51\% |
| SSA2456 | 801911.75 | 8207450.42 | 677.59 | 1.94\% | SSA2510 | 801908.45 | 8207101.16 | 658.88 | 1.05\% |
| SSA2457 | 801860.61 | 8207450.91 | 665.82 | 2.11\% | SSA2511 | 801960.42 | 8207098.56 | 658.62 | 1.10\% |
| SSA2458 | 801811.36 | 8207449.59 | 653.15 | 3.49\% | SSA2512 | 802008.79 | 8207098.67 | 640.58 | 1.29\% |
| SSA2459 | 801762.90 | 8207450.92 | 632.77 | 4.78\% | SSA2513 | 802156.45 | 8207049.90 | 623.17 | 1.57\% |

P +61 861174798
E info@latinresources.com.au
W www.latinresources.com.au

| Sample ID | UTM_X | UTM_Y | Elevation | LizO \% | Sample ID | UTM_X | UTM_Y | Elevation | Li20 \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SSA2514 | 802206.00 | 8207050.32 | 640.74 | 2.24\% | SSA2568 | 800851.51 | 8206653.07 | 644.17 | 1.72\% |
| SSA2515 | 802256.40 | 8207050.07 | 651.76 | 1.51\% | SSA2569 | 800899.33 | 8206651.53 | 656.36 | 1.74\% |
| SSA2516 | 802305.33 | 8207051.73 | 655.14 | 1.05\% | SSA2570 | 800951.65 | 8206651.03 | 673.08 | 2.56\% |
| SSA2517 | 802354.66 | 8207051.38 | 649.70 | 0.88\% | SSA2571 | 800999.91 | 8206650.81 | 707.66 | 1.49\% |
| SSA2518 | 802403.40 | 8207000.20 | 654.11 | 3.75\% | SSA2572 | 801050.54 | 8206651.67 | 708.02 | 0.90\% |
| SSA2519 | 802454.68 | 8207001.49 | 647.78 | 0.67\% | SSA2573 | 801100.72 | 8206651.20 | 705.37 | 1.66\% |
| SSA2520 | 802506.73 | 8207051.28 | 636.15 | 0.75\% | SSA2574 | 801150.58 | 8206650.74 | 695.91 | 1.94\% |
| SSA2521 | 802504.84 | 8206852.06 | 692.77 | 0.60\% | SSA2575 | 801201.00 | 8206651.48 | 683.89 | 2.07\% |
| SSA2522 | 802504.84 | 8206852.06 | 692.77 | 0.82\% | SSA2576 | 801252.16 | 8206652.33 | 661.03 | 2.13\% |
| SSA2523 | 802451.64 | 8206850.80 | 694.64 | 0.90\% | SSA2577 | 801401.75 | 8206650.94 | 663.03 | 1.51\% |
| SSA2524 | 802404.89 | 8206851.89 | 694.04 | 0.86\% | SSA2578 | 801451.92 | 8206650.03 | 662.58 | 1.79\% |
| SSA2525 | 802353.06 | 8206849.39 | 690.28 | 1.03\% | SSA2579 | 801549.10 | 8206650.58 | 669.56 | 1.87\% |
| SSA2526 | 802301.71 | 8206851.09 | 684.66 | 2.76\% | SSA2580 | 801601.63 | 8206649.86 | 678.11 | 2.54\% |
| SSA2527 | 802254.61 | 8206850.19 | 672.87 | 2.50\% | SSA2581 | 801651.72 | 8206650.39 | 685.98 | 3.49\% |
| SSA2528 | 802202.51 | 8206851.02 | 657.95 | 0.82\% | SSA2582 | 801651.72 | 8206650.39 | 685.98 | 3.44\% |
| SSA2529 | 802154.01 | 8206849.69 | 674.46 | 1.33\% | SSA2583 | 801700.61 | 8206649.05 | 681.84 | 4.22\% |
| SSA2530 | 802104.40 | 8206852.59 | 661.33 | 2.61\% | SSA2584 | 801752.01 | 8206651.44 | 666.30 | 4.74\% |
| SSA2531 | 802054.05 | 8206849.19 | 638.72 | 1.25\% | SSA2585 | 801801.30 | 8206648.44 | 650.38 | 2.65\% |
| SSA2532 | 801905.54 | 8206851.01 | 632.86 | 1.10\% | SSA2586 | 801851.30 | 8206650.08 | 640.79 | 2.65\% |
| SSA2533 | 801855.56 | 8206850.59 | 648.18 | 1.18\% | SSA2587 | 801901.82 | 8206650.82 | 639.89 | 2.48\% |
| SSA2534 | 801803.85 | 8206848.98 | 664.48 | 0.99\% | SSA2588 | 801950.95 | 8206651.14 | 650.52 | 4.44\% |
| SSA2535 | 801752.94 | 8206851.56 | 666.50 | 1.70\% | SSA2589 | 802001.98 | 8206650.00 | 678.01 | 1.87\% |
| SSA2536 | 801701.70 | 8206852.49 | 669.73 | 1.23\% | SSA2590 | 802051.94 | 8206649.42 | 670.09 | 1.25\% |
| SSA2537 | 801654.38 | 8206851.03 | 660.88 | 2.15\% | SSA2591 | 802100.97 | 8206650.74 | 674.27 | 1.79\% |
| SSA2538 | 801603.02 | 8206851.74 | 650.38 | 3.21\% | SSA2592 | 802150.19 | 8206649.73 | 673.27 | 1.87\% |
| SSA2539 | 801553.05 | 8206852.65 | 650.77 | 1.96\% | SSA2593 | 802201.03 | 8206650.25 | 666.61 | 2.02\% |
| SSA2540 | 801502.84 | 8206850.79 | 660.41 | 1.92\% | SSA2594 | 802250.91 | 8206651.22 | 654.11 | 1.55\% |
| SSA2541 | 801451.59 | 8206851.71 | 654.41 | 1.23\% | SSA2595 | 802302.25 | 8206649.74 | 644.57 | 1.38\% |
| SSA2543 | 801403.22 | 8206851.49 | 660.16 | 1.29\% | SSA2596 | 802351.19 | 8206651.72 | 644.50 | 1.40\% |
| SSA2544 | 801353.46 | 8206851.40 | 669.89 | 1.40\% | SSA2597 | 802401.36 | 8206650.70 | 648.79 | 0.78\% |
| SSA2545 | 801301.87 | 8206851.33 | 678.65 | 1.55\% | SSA2598 | 802450.48 | 8206650.24 | 652.26 | 1.46\% |
| SSA2546 | 801253.61 | 8206851.44 | 686.11 | 2.39\% | SSA2599 | 802502.28 | 8206650.97 | 658.46 | 1.36\% |
| SSA2547 | 801203.74 | 8206851.13 | 681.37 | 1.77\% | SSA2600 | 802498.67 | 8206451.33 | 686.20 | 1.08\% |
| SSA2548 | 801153.43 | 8206850.49 | 677.86 | 1.27\% | SSA2601 | 802448.17 | 8206451.70 | 691.42 | 1.10\% |
| SSA2549 | 801101.65 | 8206851.20 | 679.67 | 1.03\% | SSA2603 | 802396.05 | 8206451.86 | 689.96 | 1.12\% |
| SSA2550 | 801052.20 | 8206850.77 | 681.74 | 1.72\% | SSA2604 | 802346.62 | 8206452.54 | 687.15 | 1.01\% |
| SSA2551 | 801002.76 | 8206850.68 | 680.36 | 1.16\% | SSA2605 | 802298.45 | 8206451.43 | 701.89 | 1.33\% |
| SSA2552 | 800953.64 | 8206850.36 | 674.21 | 1.21\% | SSA2606 | 802249.00 | 8206450.56 | 704.73 | 1.38\% |
| SSA2553 | 800903.25 | 8206851.71 | 664.42 | 1.51\% | SSA2607 | 802198.93 | 8206451.81 | 698.78 | 1.27\% |
| SSA2554 | 800853.38 | 8206851.29 | 672.91 | 1.66\% | SSA2608 | 802145.01 | 8206452.66 | 689.55 | 2.22\% |
| SSA2555 | 800802.02 | 8206851.88 | 661.29 | 1.46\% | SSA2609 | 802098.75 | 8206450.20 | 701.60 | 1.81\% |
| SSA2556 | 800751.62 | 8206852.13 | 649.41 | 1.25\% | SSA2610 | 802049.31 | 8206450.32 | 712.39 | 2.45\% |
| SSA2557 | 800703.05 | 8206853.57 | 637.45 | 0.93\% | SSA2611 | 801999.01 | 8206450.46 | 710.63 | 1.96\% |
| SSA2558 | 800651.35 | 8206852.62 | 625.16 | 1.05\% | SSA2612 | 801950.00 | 8206450.14 | 703.87 | 1.25\% |
| SSA2559 | 800603.42 | 8206853.05 | 612.64 | 0.93\% | SSA2613 | 801897.97 | 8206448.97 | 697.77 | 1.42\% |
| SSA2560 | 800552.64 | 8206849.54 | 604.56 | 2.09\% | SSA2614 | 801849.36 | 8206454.30 | 682.28 | 1.81\% |
| SSA2561 | 800550.46 | 8206651.33 | 635.44 | 0.84\% | SSA2615 | 801797.20 | 8206451.03 | 688.55 | 5.10\% |
| SSA2562 | 800550.26 | 8206652.33 | 635.72 | 1.29\% | SSA2616 | 801748.27 | 8206449.26 | 679.29 | 2.43\% |
| SSA2563 | 800601.27 | 8206649.85 | 642.05 | 1.03\% | SSA2617 | 801697.13 | 8206450.52 | 693.89 | 1.79\% |
| SSA2564 | 800652.54 | 8206650.26 | 646.27 | 1.46\% | SSA2618 | 801647.50 | 8206452.31 | 692.89 | 1.57\% |
| SSA2565 | 800701.12 | 8206650.15 | 649.77 | 1.18\% | SSA2619 | 801598.15 | 8206450.99 | 681.86 | 2.69\% |
| SSA2566 | 800750.15 | 8206651.14 | 646.36 | 1.72\% | SSA2620 | 801547.19 | 8206449.48 | 674.23 | 5.21\% |
| SSA2567 | 800799.07 | 8206652.35 | 640.18 | 1.36\% | SSA2621 | 801498.95 | 8206450.70 | 688.28 | 1.42\% |

P +61 861174798
E info@latinresources.com.au
W www.latinresources.com.au

ASX:LRS | FRA:XL5 ACN: 131405144

| Sample ID | UTM_X | UTM_Y | Elevation | $\mathrm{Li}_{2} \mathrm{O}$ \% | Sample ID | UTM_X | UTM_Y | Elevation | $\mathrm{Li}_{2} \mathrm{O}$ \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SSA2622 | 801499.79 | 8206449.91 | 687.77 | 1.42\% | SSA2676 | 802145.98 | 8206251.30 | 756.03 | 0.97\% |
| SSA2623 | 801449.18 | 8206450.16 | 683.02 | 1.44\% | SSA2677 | 802196.05 | 8206249.95 | 758.87 | 1.03\% |
| SSA2624 | 801397.51 | 8206451.32 | 673.21 | 1.57\% | SSA2678 | 802245.84 | 8206252.69 | 754.95 | 0.88\% |
| SSA2625 | 801347.32 | 8206451.56 | 666.98 | 2.05\% | SSA2679 | 802295.50 | 8206252.90 | 751.45 | 1.03\% |
| SSA2626 | 801296.18 | 8206452.49 | 674.55 | 1.77\% | SSA2680 | 802345.03 | 8206251.88 | 751.01 | 1.38\% |
| SSA2627 | 801247.78 | 8206450.16 | 673.54 | 1.68\% | SSA2681 | 802397.36 | 8206251.38 | 739.25 | 1.21\% |
| SSA2628 | 801198.46 | 8206451.06 | 670.81 | 1.92\% | SSA2682 | 802397.15 | 8206251.60 | 739.58 | 1.01\% |
| SSA2629 | 801148.71 | 8206452.19 | 688.90 | 2.50\% | SSA2683 | 802445.63 | 8206252.04 | 718.39 | 1.16\% |
| SSA2630 | 801097.98 | 8206451.22 | 701.81 | 2.09\% | SSA2684 | 802496.96 | 8206249.56 | 721.08 | 0.93\% |
| SSA2631 | 801047.90 | 8206451.47 | 708.97 | 2.54\% | SSA2685 | 800542.37 | 8206052.61 | 723.22 | 4.26\% |
| SSA2632 | 801000.82 | 8206451.67 | 698.38 | 2.95\% | SSA2686 | 800592.86 | 8206051.69 | 723.31 | 4.28\% |
| SSA2633 | 800947.19 | 8206450.97 | 693.83 | 3.83\% | SSA2687 | 800642.20 | 8206052.46 | 727.29 | 0.75\% |
| SSA2634 | 800897.87 | 8206451.64 | 695.61 | 3.57\% | SSA2688 | 800693.44 | 8206050.87 | 733.09 | 1.40\% |
| SSA2635 | 800848.42 | 8206451.10 | 698.24 | 2.33\% | SSA2689 | 800743.08 | 8206050.19 | 754.36 | 1.08\% |
| SSA2636 | 800797.16 | 8206450.48 | 706.43 | 2.69\% | SSA2690 | 800792.21 | 8206051.18 | 777.63 | 1.23\% |
| SSA2637 | 800747.74 | 8206452.15 | 705.50 | 2.09\% | SSA2691 | 800842.09 | 8206051.71 | 782.53 | 1.12\% |
| SSA2638 | 800698.49 | 8206450.72 | 708.31 | 2.02\% | SSA2692 | 800892.48 | 8206051.13 | 772.34 | 0.78\% |
| SSA2639 | 800648.42 | 8206451.52 | 705.07 | 2.26\% | SSA2693 | 800942.77 | 8206050.77 | 764.49 | 0.60\% |
| SSA2640 | 800597.91 | 8206451.21 | 681.00 | 2.56\% | SSA2694 | 800994.05 | 8206052.28 | 758.37 | 0.71\% |
| SSA2641 | 800548.35 | 8206450.34 | 661.44 | 2.43\% | SSA2695 | 801043.92 | 8206052.71 | 758.01 | 1.14\% |
| SSA2642 | 800548.35 | 8206450.34 | 661.44 | 2.50\% | SSA2696 | 801092.92 | 8206051.70 | 746.76 | 1.14\% |
| SSA2643 | 800545.52 | 8206251.36 | 676.06 | 3.19\% | SSA2697 | 801143.30 | 8206050.12 | 746.37 | 1.03\% |
| SSA2644 | 800594.96 | 8206251.46 | 692.02 | 15.78\% | SSA2698 | 801194.77 | 8206050.19 | 740.40 | 1.27\% |
| SSA2645 | 800646.83 | 8206249.53 | 717.49 | 3.53\% | SSA2699 | 801242.72 | 8206050.53 | 720.00 | 1.98\% |
| SSA2646 | 800695.73 | 8206249.30 | 726.50 | 2.80\% | SSA2700 | 801292.56 | 8206048.85 | 730.10 | 1.31\% |
| SSA2647 | 800745.83 | 8206250.17 | 738.30 | 3.83\% | SSA2701 | 801342.97 | 8206049.04 | 745.83 | 1.05\% |
| SSA2648 | 800796.46 | 8206251.24 | 744.16 | 2.35\% | SSA2702 | 801342.97 | 8206049.04 | 745.83 | 1.05\% |
| SSA2649 | 800846.53 | 8206250.34 | 744.91 | 1.98\% | SSA2703 | 801392.87 | 8206051.35 | 749.63 | 1.18\% |
| SSA2650 | 800895.12 | 8206250.89 | 735.75 | 1.87\% | SSA2704 | 801443.48 | 8206051.20 | 752.50 | 1.16\% |
| SSA2651 | 800945.74 | 8206251.19 | 721.40 | 2.00\% | SSA2705 | 801491.64 | 8206051.43 | 754.69 | 1.42\% |
| SSA2652 | 800998.04 | 8206249.59 | 718.21 | 1.53\% | SSA2706 | 801543.02 | 8206052.83 | 753.63 | 1.40\% |
| SSA2653 | 801045.69 | 8206251.26 | 726.57 | 1.92\% | SSA2707 | 801593.32 | 8206053.13 | 744.91 | 1.53\% |
| SSA2654 | 801096.19 | 8206250.79 | 715.51 | 1.89\% | SSA2708 | 801641.97 | 8206050.36 | 740.08 | 1.59\% |
| SSA2655 | 801146.91 | 8206250.98 | 710.24 | 1.66\% | SSA2709 | 801692.49 | 8206050.88 | 738.04 | 4.13\% |
| SSA2656 | 801195.62 | 8206251.86 | 691.93 | 1.27\% | SSA2710 | 801743.44 | 8206051.62 | 734.34 | 1.98\% |
| SSA2657 | 801246.77 | 8206252.04 | 697.36 | 1.23\% | SSA2711 | 801792.97 | 8206050.38 | 741.40 | 1.46\% |
| SSA2658 | 801296.09 | 8206250.92 | 685.81 | 1.89\% | SSA2712 | 801843.17 | 8206051.69 | 761.03 | 1.25\% |
| SSA2659 | 801346.08 | 8206252.23 | 686.89 | 6.52\% | SSA2713 | 801893.15 | 8206051.89 | 767.53 | 0.69\% |
| SSA2660 | 801397.52 | 8206249.64 | 712.84 | 5.02\% | SSA2714 | 801943.51 | 8206048.76 | 765.94 | 0.65\% |
| SSA2661 | 801446.74 | 8206249.63 | 710.10 | 2.69\% | SSA2715 | 801992.86 | 8206050.40 | 767.57 | 0.65\% |
| SSA2663 | 801496.17 | 8206248.39 | 711.22 | 1.27\% | SSA2716 | 802044.35 | 8206051.24 | 783.29 | 0.86\% |
| SSA2664 | 801544.27 | 8206252.27 | 719.52 | 2.17\% | SSA2717 | 802093.79 | 8206051.34 | 795.82 | 0.60\% |
| SSA2665 | 801595.47 | 8206248.58 | 708.69 | 6.07\% | SSA2718 | 802141.94 | 8206051.34 | 800.15 | 0.65\% |
| SSA2666 | 801644.88 | 8206253.66 | 724.42 | 2.20\% | SSA2719 | 802193.63 | 8206051.51 | 766.25 | 0.43\% |
| SSA2667 | 801696.34 | 8206252.84 | 735.96 | 1.38\% | SSA2720 | 802243.93 | 8206051.37 | 779.26 | 0.62\% |
| SSA2668 | 801746.72 | 8206251.15 | 735.53 | 1.94\% | SSA2721 | 802293.69 | 8206051.46 | 771.93 | 1.05\% |
| SSA2669 | 801796.59 | 8206251.79 | 730.01 | 1.38\% | SSA2723 | 802343.22 | 8206050.56 | 769.02 | 0.73\% |
| SSA2670 | 801849.13 | 8206251.07 | 725.31 | 1.25\% | SSA2724 | 802391.92 | 8206050.88 | 770.53 | 1.05\% |
| SSA2671 | 801895.47 | 8206251.76 | 723.25 | 1.29\% | SSA2725 | 802442.31 | 8206050.52 | 766.22 | 0.97\% |
| SSA2672 | 801945.87 | 8206251.62 | 728.37 | 1.18\% | SSA2726 | 802492.50 | 8206050.16 | 757.17 | 0.99\% |
| SSA2673 | 801996.59 | 8206251.36 | 745.81 | 0.97\% |  |  |  |  |  |
| SSA2674 | 802046.25 | 8206251.57 | 748.49 | 1.31\% |  |  |  |  |  |
| SSA2675 | 802095.02 | 8206249.34 | 751.62 | 1.18\% |  |  |  |  |  |

P +61 861174798
E info@latinresources.com.au
W www.latinresources.com.au

## APPENDIX 6 <br> JORC CODE, 2012 EDITION - TABLE 1 SECTION 1 SAMPLING TECHNIQUES AND DATA <br> (CRITERIA IN THIS SECTION APPLY TO ALL SUCCEEDING SECTIONS)

| Criteria | JORC Code explanation |
| :---: | :---: |
| Sampling techniques | - Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. <br> - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. <br> - Aspects of the determination of mineralisation that are Material to the Public Report. <br> - In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. |

- The July 2021 stream sediment sampling program was completed by Latin Resources.
- Latin Resources stream sediment sampling:
- Stream sediment samples were taken in the field by Latin's geologists during field campaign using pre-set locations and procedures.
- All surface organic matter and soil were removed from the sampling point, then the active stream sediment was collected from five holes spaced 2.5 m using a post digger.
- Five subsamples were collected along 25 cm depth, homogenised in a plastic tarp and split into four parts.
- The chosen part (1/4) was screened using a 2 mm stainless steel sieve.
- A composite sample weighting 350-400g of the <2 mm fraction was poured in a labelled zip lock bag for assaying.
- Oversize material retained in the sieve was analyzed with hand lens and discarded.
- The other three quartiles were discarded, sample holes were filled back, and sieve and canvas were thoroughly cleaned.
- Photographs of the sampling location were taken for all the samples.
- Sample book were filled in with sample information and coordinates.
- Stream sediment sample locations were collected in the field using a hand-held GPS with $+/-5 m$ accuracy using Datum SIRGAS 2000, Zone 23 South) coordinate system.
- No duplicate samples were taken at this stage.
- No certified reference standards samples were submitted at this stage.
- Latin Resources Diamond Drilling:
- Diamond core has been sampled in intervals of $\sim 1 \mathrm{~m}$ (up to 1.18 m) where possible, otherwise intervals less than 1 m have been selected based on geological boundaries. Geological boundaries have not been crossed by sample intervals.
- $1 / 2$ core samples have been collected and submitted for analysis, with regular field duplicate samples collected and submitted for QA/QC analysis.
- Metallurgical Drilling
- Latin conducted a metallurgical program on material sourced from diamond drilling in 2022 and 2023.
- Drillhole diameter was HQ for metallurgical drill holes.
- Spodumene concentrate testwork was completed on two composite samples of Colina ore.
- The samples comprising the composites were taken from $1 / 2$ HQ core from selected mineralized and unmineralized zones as part of the 65,000m drilling program.

| Criteria | JORC Code explanation | Commentary |
| :---: | :---: | :---: |
| Drilling techniques | - Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | - Latin Resources drilling is completed using industry standard practices. Diamond drilling is completed using HQ size coring equipment. <br> - Drilling techniques used at Salinas Project comprise: <br> - NTW Diamond Core ( 64.2 mm diameter), standard tube to a depth of $\sim 200-250 \mathrm{~m}$. <br> - BTW diamond core utilized for hole SADD031 from a depth of 309.10 m . <br> - Diamond core holes drilled directly from surface. <br> - Initial drill rig alignment is carried out using Reflex TN14 alignment tool. <br> - Down hole survey was carried out by Reflex EZ-TRAC tool. <br> - Core orientation was provided by an ACT Reflex (ACT III) tool. <br> - All drill collars are surveyed using RTK DGPS. |
| Drill sample recovery | - Method of recording and assessing core and chip sample recoveries and results assessed. <br> - Measures taken to maximise sample recovery and ensure representative nature of the samples. <br> - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | - Latin Resources core is depth marked and orientated to check against the driller's blocks, ensuring that all core loss is taken into account. Diamond core recovery is logged and captured into the database. <br> - Zones of significant core loss may have resulted in grade dilution due to the loss of fine material. |
| Logging | - Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. <br> - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. <br> - The total length and percentage of the relevant intersections logged. | - All drill cores have been geologically logged. <br> - Sampling is by sawing core in half and then sampling core on nominal 1 m intervals. <br> - All core sample intervals have been photographed before and after sawing. <br> - Latin's geological logging is completed for all holes, and it is representative. The lithology, alteration, and structural characteristics of drill samples are logged following standard procedures and using standardised geological codes. <br> - Logging is both qualitative and quantitative depending on field being logged. <br> - All drill-holes are logged in full. <br> - Geological structures are collected using Reflex IQ Logger. <br> - All cores are digitally photographed and stored. |
| Sub-sampling techniques and sample preparation | - If core, whether cut or sawn and whether quarter, half or all core taken. <br> - If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. <br> - For all sample types, the nature, quality and appropriateness of the sample preparation technique. <br> - Quality control procedures adopted for all subsampling stages to maximise representivity of samples. <br> - Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. <br> - Whether sample sizes are appropriate to the grain size of the material being sampled. | - For the 2021 stream sediment sampling program: <br> - All samples collected from field were dry due to dry season. <br> - To maximise representativeness, samples were taken from five holes weighting around 3 Kg each for a total of 15 Kg to be reduced to $350-400 \mathrm{~g}$. <br> - Samples were dried, crushed and pulverized 250 g to $95 \%$ at 150\#. Any samples requiring splitting were split using a Jones splitter. <br> - For the 2023 diamond drilling program: <br> - Samples were crushed in a hammer mill to $75 \%$ passing -3 mm followed by splitting off 250 g using a Jones splitter and pulverizing to better than 95\% passing 75 microns. <br> - Duplicate sampling is carried out routinely throughout the drilling campaign. The laboratory will carry out routine internal repeat assays on crushed samples. <br> - The selected sample mass is considered appropriate for the grain size of the material being sampled. |

Page 27 of 31

| Criteria | JORC Code explanation | Commentary |
| :---: | :---: | :---: |
| Quality of assay data and laboratory tests | - The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. <br> - For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. <br> - Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | - For the 2021 stream sediment sampling program: <br> - The stream sediment samples were assayed via ICM90A (fusion by sodium peroxide and finish with ICP-MS/ICP-OES) for a 56 -element suite at the SGS Geosol Laboratorios located at Vespasiano/Minas Gerais, Brazil. <br> - No control samples have been used at this stage. The internal laboratory controls (blanks, duplicates and standards) are considered suitable. <br> - For the 2023 diamond drilling program: <br> - Core samples are assayed via ICM90A (fusion by sodium peroxide and finish with ICP-MS/ICP-OES) for a 56 -element suite at the SGS Geosol Laboratorios located at Vespasiano/Minas Gerais, Brazil. <br> - If lithium results are above 15,000 ppm, the Lab analyze the pulp samples just for lithium through ICP90Q (fusion by sodium peroxide and finish with ICP/OES). <br> - For metallurgical testwork: <br> - All test work analysis has been undertaken by SGS Canada Natural Resources Lakefield, which conforms to the requirements of ISO/IEC 17025 and is accredited by the Standards Council of Canada. Representative subsamples were submitted for Li assay and whole rock analysis (XRF/ICP), for suite which includes SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2, P2O5, MnO, Cr2O3, V2O5, and loss on ignition (LOI), as well as semi-quantitative XRD analysis. |
| Verification of sampling and assaying | - The verification of significant intersections by either independent or alternative company personnel. <br> - The use of twinned holes. <br> - Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. <br> - Discuss any adjustment to assay data. | - Selected sample results which are considered to be significant will be subjected to resampling by the Company. This can be achieved by either reassaying of sample pulps, resplitting of coarse reject samples, or resplitting of core and reassaying. <br> - All Latin Resources data is verified by the Competent person. All data is stored in an electronic Access Database. <br> Assay data and results is reported, unadjusted. <br> $\mathrm{Li}_{2} \mathrm{O}$ results used in the market are converted from Li results multiplying it by the industry factor 2.153. |
| Location of data points | - Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. <br> - Specification of the grid system used. <br> - Quality and adequacy of topographic control. | - Stream sediment sample locations and drill collars are captured using a handheld GPS. <br> - Drill collars are located using a handheld GPS. <br> - All GPS data points were later visualized using ESRI ArcGIS Software to ensure they were recorded in the correct position. <br> - The grid system used was UTM SIRGAS 2000 zone 23 South. |
| Data spacing and distribution | - Data spacing for reporting of Exploration Results. <br> - Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. <br> - Whether sample compositing has been applied. | - Stream sediment samples were taken every 200 m between sampling points along the drainages which is considered appropriate for a first stage, regional work. <br> - Every sampling spot had a composite sample made of five subsamples spaced 2.5 m each along a channel for a 10 m length zone or a cross pattern with the same spacing of 2.5 $m$ for the open valleys and braided channels. <br> - Due to the preliminary nature of the initial drilling campaign, drill holes are designed to test specific targets, with not set drill spacing. |
| Orientation of data in relation | - Whether the orientation of sampling achieves unbiased sampling of possible structures and the | - Sampling is preferentially across the strike or trend of mineralised outcrops. |


| Criteria | JORC Code explanation | Commentary |
| :---: | :---: | :---: |
| to geological structure | extent to which this is known, considering the deposit type. <br> - If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | - Drilling has been designed to intersect the mapped stratigraphy as close to normal as possible. |
| Sample security | - The measures taken to ensure sample security. | - At all times samples were in the custody and control of the Company's representatives until delivery to the laboratory where samples were held in a secure enclosure pending processing. |
| Audits or reviews | - The results of any audits or reviews of sampling techniques and data. | - The Competent Person for Exploration Results reported here has reviewed the field procedures used for sampling program at field and has compiled results from the original sampling and laboratory data. <br> - No External audit has been undertaken at this stage. |

## SECTION 2 REPORTING OF EXPLORATION RESULTS (CRITERIA LISTED IN THE PRECEDING SECTION ALSO APPLY TO THIS SECTION.)

| Criteria | JORC Code explanation | Commentary |
| :---: | :---: | :---: |
| Mineral tenement and land tenure status | - Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. <br> - The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | - Exploration Licences: 830.578/2019, 830.579/2019, 830.580/2019, 30.581/2019, 830.582/2019, 830.691/2017, 832.515/2021 and the western portion of 831.799/2005 are 100\% fully owned by Latin Resources Limited. <br> - Latin has lodged new applications for the following areas: <br> - Latin has entered in separate exclusive option agreement to acquire $100 \%$ interest in the areas: 830.080/2022, 830.581/2019, 831.118/2008, 831.219/2017, 831.798/2015, 831.799/2005 (Second Part \& Third Part), 833.881/2010 \& 834.282/2007. <br> - The Company is not aware of any impediments to obtaining a licence to operate, subject to carrying out appropriate environmental and clearance surveys. |
| Exploration done by other parties | - Acknowledgment and appraisal of exploration by other parties. | - Historic exploration was carried out on the area 830.080/2022 (Monte Alto) with extraction of gems (tourmaline and lepidolite), amblygonite, columbite and feldspar. |
| Geology | - Deposit type, geological setting and style of mineralisation. | - Salinas Lithium Project geology comprises Neoproterozoic age sedimentary rocks of Araçuaí Orogen intruded by fertile Li-bearing pegmatites originated by fractionation of magmatic fluids from the peraluminous S-type posttectonic granitoids of Araçuaí Orogen. Lithium mineralisation is related to discordant swarms of spodumene-bearing tabular pegmatites hosted by biotitequartz schists. |
| Drill hole Information | - A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <br> - easting and northing of the drill hole collar <br> - elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar <br> - dip and azimuth of the hole <br> - down hole length and interception depth <br> - hole length <br> - If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | - All drill hole summary location data is provided in Appendix 1 to this report and is accurately represented in appropriate location maps and drill sections where required. |
| Data <br> aggregation methods | - In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high-grades) and cut-off grades are usually Material and should be stated. <br> - Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of | - Sample length weighted averaging techniques have been applied to the sample assay results. <br> - Where duplicate core samples have been collected in the field, results for duplicate pairs have been averaged. <br> - A nominal minimum $\mathrm{Li}_{2} \mathrm{O}$ grade of $0.4 \% \mathrm{Li}_{2} \mathrm{O}$ has been used to define a 'significant intersection'. <br> - No grade top cuts have been applied. |

P +61 861174798
E info@latinresources.com.au
W www.latinresources.com.au

ASX:LRS | FRA:XL5
ACN: 131405144

Page 30 of 31

| Criteria | JORC Code explanation | Commentary |
| :---: | :---: | :---: |
|  | low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. <br> - The assumptions used for any reporting of metal equivalent values should be clearly stated. |  |
| Relationship between mineralisation widths and intercept lengths | - These relationships are particularly important in the reporting of Exploration Results. <br> - If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. <br> - If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). | - Drilling is carried out at right angles to targeted structures and mineralised zones where possible. <br> - Drill core orientation is of a high quality, with clear contact of pegmatite bodies, enabling the calculation of true width intersections. |
| Diagrams | - Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | - The Company has released various maps and figures showing the sample results in the geological context. |
| Balanced reporting | - Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high-grades and/or widths should be practiced avoiding misleading reporting of Exploration Results. | - All analytical results for lithium have been reported. |
| Other substantive exploration data | - Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | - All information that is considered material has been reported, including stream sediment sampling results, Drilling results geological context, etc. <br> - Sighter metallurgical test work was undertaken on approximately 44 kg of drill core sourced from drill hole SADD023 (26.99m: 94.00-120.88m) and submitted to independent laboratories SGS GEOSOL Laboratories in Belo Horizonte Brazil. <br> - Test work included crushing, size fraction analysis and HLS separation to ascertain the amenability of the Colina Project spodumene pegmatite material to DMS treatment routes. |
| Further work | - The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). <br> - Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | - Latin plans to undertake additional reconnaissance mapping, infill stream sediment and soil sampling at Salinas South Prospect. <br> - Follow-up infill and step-out drilling will be undertaken based on results. <br> - Additional metallurgical processing test work on drill core form the Colina Prospect. |


[^0]:    ${ }^{1}$ Refer to LRS's ASX Announcement dated 20 June 2023, entitled " $241 \%$ Increase for the Colina Mineral Resource"
    ${ }^{2}$ Refer to LRS's ASX Announcement dated 28 September 2023, entitled "Robust Results For Colina Lithium Project Preliminary Economic Assessment (PEA)"

[^1]:    ${ }^{3}$ Refer to LRS's ASX Announcement dated 20 June 2023, entitled " $241 \%$ Increase for the Colina Mineral Resource"

[^2]:    ${ }^{4}$ Refer to LRS's ASX Announcement dated 20 June 2023, entitled "241\% Increase for the Colina Mineral Resource"
    ${ }^{5}$ Refer to LRS's ASX Announcement dated 20 June 2023, entitled " $241 \%$ Increase for the Colina Mineral Resource"

